BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 20808948)

  • 1. Binding of protein kinase inhibitors to synapsin I inferred from pair-wise binding site similarity measurements.
    Defranchi E; Schalon C; Messa M; Onofri F; Benfenati F; Rognan D
    PLoS One; 2010 Aug; 5(8):e12214. PubMed ID: 20808948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, kinase inhibitory potencies, and in vitro antiproliferative evaluation of new Pim kinase inhibitors.
    Akué-Gédu R; Rossignol E; Azzaro S; Knapp S; Filippakopoulos P; Bullock AN; Bain J; Cohen P; Prudhomme M; Anizon F; Moreau P
    J Med Chem; 2009 Oct; 52(20):6369-81. PubMed ID: 19788246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting the repertoire of CK2 inhibitors to target DYRK and PIM kinases.
    Cozza G; Sarno S; Ruzzene M; Girardi C; Orzeszko A; Kazimierczuk Z; Zagotto G; Bonaiuto E; Di Paolo ML; Pinna LA
    Biochim Biophys Acta; 2013 Jul; 1834(7):1402-9. PubMed ID: 23360763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated regulation of synapsin I interaction with F-actin by Ca2+/calmodulin and phosphorylation: inhibition of actin binding and bundling.
    Goold R; Chan KM; Baines AJ
    Biochemistry; 1995 Feb; 34(6):1912-20. PubMed ID: 7849051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetramerization and ATP binding by a protein comprising the A, B, and C domains of rat synapsin I.
    Brautigam CA; Chelliah Y; Deisenhofer J
    J Biol Chem; 2004 Mar; 279(12):11948-56. PubMed ID: 14688264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel inhibitors for Pim-1 kinase using pharmacophore modeling based on a novel method for selecting pharmacophore generation subsets.
    Shahin R; Swellmeen L; Shaheen O; Aboalhaija N; Habash M
    J Comput Aided Mol Des; 2016 Jan; 30(1):39-68. PubMed ID: 26685860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synapsins I and II are ATP-binding proteins with differential Ca2+ regulation.
    Hosaka M; Südhof TC
    J Biol Chem; 1998 Jan; 273(3):1425-9. PubMed ID: 9430678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of PIM1 kinase complexes with ATP-competitive inhibitors.
    Bogusz J; Zrubek K; Rembacz KP; Grudnik P; Golik P; Romanowska M; Wladyka B; Dubin G
    Sci Rep; 2017 Oct; 7(1):13399. PubMed ID: 29042609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions.
    Jovanovic JN; Benfenati F; Siow YL; Sihra TS; Sanghera JS; Pelech SL; Greengard P; Czernik AJ
    Proc Natl Acad Sci U S A; 1996 Apr; 93(8):3679-83. PubMed ID: 8622996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actin and tubulin binding domains of synapsins Ia and Ib.
    Petrucci TC; Morrow JS
    Biochemistry; 1991 Jan; 30(2):413-22. PubMed ID: 1899024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flexible-protein molecular docking study of the binding of ruthenium complex compounds to PIM1, GSK-3β, and CDK2/Cyclin A protein kinases.
    Liu Y; Agrawal NJ; Radhakrishnan R
    J Mol Model; 2013 Jan; 19(1):371-82. PubMed ID: 22926267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based design of low-nanomolar PIM kinase inhibitors.
    Ishchenko A; Zhang L; Le Brazidec JY; Fan J; Chong JH; Hingway A; Raditsis A; Singh L; Elenbaas B; Hong VS; Marcotte D; Silvian L; Enyedy I; Chao J
    Bioorg Med Chem Lett; 2015 Feb; 25(3):474-80. PubMed ID: 25575657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Systematic Analysis of the Binding Affinity between the Pim-1 Kinase and Its Inhibitors Based on the MM/3D-RISM/KH Method.
    Hasegawa T; Sugita M; Kikuchi T; Hirata F
    J Chem Inf Model; 2017 Nov; 57(11):2789-2798. PubMed ID: 29019402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding PIM-1 kinase inhibitor interactions with free energy simulation.
    Wang X; Sun Z
    Phys Chem Chem Phys; 2019 Apr; 21(14):7544-7558. PubMed ID: 30895980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002.
    Jacobs MD; Black J; Futer O; Swenson L; Hare B; Fleming M; Saxena K
    J Biol Chem; 2005 Apr; 280(14):13728-34. PubMed ID: 15657054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that two non-overlapping high-affinity calmodulin-binding sites are present in the head region of synapsin I.
    Goold R; Baines AJ
    Eur J Biochem; 1994 Aug; 224(1):229-40. PubMed ID: 8076644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual Screening and Design with Machine Intelligence Applied to Pim-1 Kinase Inhibitors.
    Schneider P; Welin M; Svensson B; Walse B; Schneider G
    Mol Inform; 2020 Sep; 39(9):e2000109. PubMed ID: 33448694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions.
    Matsubara M; Kusubata M; Ishiguro K; Uchida T; Titani K; Taniguchi H
    J Biol Chem; 1996 Aug; 271(35):21108-13. PubMed ID: 8702879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome-wide discovery of unknown ATP-binding proteins and kinase inhibitor target proteins using an ATP probe.
    Adachi J; Kishida M; Watanabe S; Hashimoto Y; Fukamizu K; Tomonaga T
    J Proteome Res; 2014 Dec; 13(12):5461-70. PubMed ID: 25230287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combination strategy to inhibit Pim-1: synergism between noncompetitive and ATP-competitive inhibitors.
    Mori M; Tintori C; Christopher RS; Radi M; Schenone S; Musumeci F; Brullo C; Sanità P; Delle Monache S; Angelucci A; Kissova M; Crespan E; Maga G; Botta M
    ChemMedChem; 2013 Mar; 8(3):484-96. PubMed ID: 23436791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.