These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Uncoupling histone H3K4 trimethylation from developmental gene expression via an equilibrium of COMPASS, Polycomb and DNA methylation. Douillet D; Sze CC; Ryan C; Piunti A; Shah AP; Ugarenko M; Marshall SA; Rendleman EJ; Zha D; Helmin KA; Zhao Z; Cao K; Morgan MA; Singer BD; Bartom ET; Smith ER; Shilatifard A Nat Genet; 2020 Jun; 52(6):615-625. PubMed ID: 32393859 [TBL] [Abstract][Full Text] [Related]
5. Loss of histone methyltransferase SETD1B in oogenesis results in the redistribution of genomic histone 3 lysine 4 trimethylation. Hanna CW; Huang J; Belton C; Reinhardt S; Dahl A; Andrews S; Stewart AF; Kranz A; Kelsey G Nucleic Acids Res; 2022 Feb; 50(4):1993-2004. PubMed ID: 35137160 [TBL] [Abstract][Full Text] [Related]
6. Not All H3K4 Methylations Are Created Equal: Mll2/COMPASS Dependency in Primordial Germ Cell Specification. Hu D; Gao X; Cao K; Morgan MA; Mas G; Smith ER; Volk AG; Bartom ET; Crispino JD; Di Croce L; Shilatifard A Mol Cell; 2017 Feb; 65(3):460-475.e6. PubMed ID: 28157506 [TBL] [Abstract][Full Text] [Related]
7. Mll2 controls cardiac lineage differentiation of mouse embryonic stem cells by promoting H3K4me3 deposition at cardiac-specific genes. Wan X; Liu L; Ding X; Zhou P; Yuan X; Zhou Z; Hu P; Zhou H; Li Q; Zhang S; Xiong S; Zhang Y Stem Cell Rev Rep; 2014 Oct; 10(5):643-52. PubMed ID: 24913280 [TBL] [Abstract][Full Text] [Related]
8. Histone H3K4 methylation-dependent and -independent functions of Set1A/COMPASS in embryonic stem cell self-renewal and differentiation. Sze CC; Cao K; Collings CK; Marshall SA; Rendleman EJ; Ozark PA; Chen FX; Morgan MA; Wang L; Shilatifard A Genes Dev; 2017 Sep; 31(17):1732-1737. PubMed ID: 28939616 [TBL] [Abstract][Full Text] [Related]
9. CFP1 Regulates Histone H3K4 Trimethylation and Developmental Potential in Mouse Oocytes. Yu C; Fan X; Sha QQ; Wang HH; Li BT; Dai XX; Shen L; Liu J; Wang L; Liu K; Tang F; Fan HY Cell Rep; 2017 Aug; 20(5):1161-1172. PubMed ID: 28768200 [TBL] [Abstract][Full Text] [Related]
10. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Wang P; Lin C; Smith ER; Guo H; Sanderson BW; Wu M; Gogol M; Alexander T; Seidel C; Wiedemann LM; Ge K; Krumlauf R; Shilatifard A Mol Cell Biol; 2009 Nov; 29(22):6074-85. PubMed ID: 19703992 [TBL] [Abstract][Full Text] [Related]
11. A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line. Li T; Kelly WG PLoS Genet; 2011 Mar; 7(3):e1001349. PubMed ID: 21455483 [TBL] [Abstract][Full Text] [Related]
12. Histone recognition and nuclear receptor co-activator functions of Drosophila cara mitad, a homolog of the N-terminal portion of mammalian MLL2 and MLL3. Chauhan C; Zraly CB; Parilla M; Diaz MO; Dingwall AK Development; 2012 Jun; 139(11):1997-2008. PubMed ID: 22569554 [TBL] [Abstract][Full Text] [Related]
13. Activator-mediated recruitment of the MLL2 methyltransferase complex to the beta-globin locus. Demers C; Chaturvedi CP; Ranish JA; Juban G; Lai P; Morle F; Aebersold R; Dilworth FJ; Groudine M; Brand M Mol Cell; 2007 Aug; 27(4):573-84. PubMed ID: 17707229 [TBL] [Abstract][Full Text] [Related]
14. The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Hu D; Garruss AS; Gao X; Morgan MA; Cook M; Smith ER; Shilatifard A Nat Struct Mol Biol; 2013 Sep; 20(9):1093-7. PubMed ID: 23934151 [TBL] [Abstract][Full Text] [Related]
15. KDM4A regulates the maternal-to-zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes. Sankar A; Lerdrup M; Manaf A; Johansen JV; Gonzalez JM; Borup R; Blanshard R; Klungland A; Hansen K; Andersen CY; Dahl JA; Helin K; Hoffmann ER Nat Cell Biol; 2020 Apr; 22(4):380-388. PubMed ID: 32231309 [TBL] [Abstract][Full Text] [Related]
16. Role of CxxC-finger protein 1 in establishing mouse oocyte epigenetic landscapes. Sha QQ; Zhu YZ; Xiang Y; Yu JL; Fan XY; Li YC; Wu YW; Shen L; Fan HY Nucleic Acids Res; 2021 Mar; 49(5):2569-2582. PubMed ID: 33621320 [TBL] [Abstract][Full Text] [Related]
17. The histone methyltransferase KMT2B is required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Ladopoulos V; Hofemeister H; Hoogenkamp M; Riggs AD; Stewart AF; Bonifer C Mol Cell Biol; 2013 Apr; 33(7):1383-93. PubMed ID: 23358417 [TBL] [Abstract][Full Text] [Related]
18. Broad domains of histone 3 lysine 4 trimethylation are associated with transcriptional activation in CA1 neurons of the hippocampus during memory formation. Collins BE; Sweatt JD; Greer CB Neurobiol Learn Mem; 2019 May; 161():149-157. PubMed ID: 31002880 [TBL] [Abstract][Full Text] [Related]
19. Pax6 associates with H3K4-specific histone methyltransferases Mll1, Mll2, and Set1a and regulates H3K4 methylation at promoters and enhancers. Sun J; Zhao Y; McGreal R; Cohen-Tayar Y; Rockowitz S; Wilczek C; Ashery-Padan R; Shechter D; Zheng D; Cvekl A Epigenetics Chromatin; 2016; 9(1):37. PubMed ID: 27617035 [TBL] [Abstract][Full Text] [Related]
20. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Zhang B; Zheng H; Huang B; Li W; Xiang Y; Peng X; Ming J; Wu X; Zhang Y; Xu Q; Liu W; Kou X; Zhao Y; He W; Li C; Chen B; Li Y; Wang Q; Ma J; Yin Q; Kee K; Meng A; Gao S; Xu F; Na J; Xie W Nature; 2016 Sep; 537(7621):553-557. PubMed ID: 27626382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]