BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 20809072)

  • 1. Identification of the membrane protein SucE and its role in succinate transport in Corynebacterium glutamicum.
    Huhn S; Jolkver E; Krämer R; Marin K
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):327-35. PubMed ID: 20809072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of succinate exporter in Corynebacterium glutamicum and its physiological roles under anaerobic conditions.
    Fukui K; Koseki C; Yamamoto Y; Nakamura J; Sasahara A; Yuji R; Hashiguchi K; Usuda Y; Matsui K; Kojima H; Abe K
    J Biotechnol; 2011 Jun; 154(1):25-34. PubMed ID: 21420450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system.
    Zhu N; Xia H; Yang J; Zhao X; Chen T
    Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
    Okino S; Noburyu R; Suda M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):459-64. PubMed ID: 18777022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of overexpressing isocitrate lyase on succinate production in ldh(-1) Corynebacterium glutamicum].
    Yang C; Hao N; Yan M; Gao L; Xu L
    Sheng Wu Gong Cheng Xue Bao; 2013 Nov; 29(11):1696-700. PubMed ID: 24701837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corynebacterium glutamicum CgynfM encodes a dicarboxylate transporter applicable to succinate production.
    Fukui K; Nanatani K; Nakayama M; Hara Y; Tokura M; Abe K
    J Biosci Bioeng; 2019 Apr; 127(4):465-471. PubMed ID: 30392965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor.
    Nishimura T; Vertès AA; Shinoda Y; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):889-97. PubMed ID: 17347820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum.
    Hartmann M; Barsch A; Niehaus K; Pühler A; Tauch A; Kalinowski J
    Arch Microbiol; 2004 Oct; 182(4):299-312. PubMed ID: 15480574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum.
    Suzuki N; Watanabe K; Okibe N; Tsuchida Y; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2009 Mar; 82(3):491-500. PubMed ID: 19066885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proteomic study of Corynebacterium glutamicum AAA+ protease FtsH.
    Lüdke A; Krämer R; Burkovski A; Schluesener D; Poetsch A
    BMC Microbiol; 2007 Jan; 7():6. PubMed ID: 17254330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.
    Wang C; Zhang H; Cai H; Zhou Z; Chen Y; Chen Y; Ouyang P
    Appl Biochem Biotechnol; 2014 Jan; 172(1):340-50. PubMed ID: 24078255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions.
    Inui M; Murakami S; Okino S; Kawaguchi H; Vertès AA; Yukawa H
    J Mol Microbiol Biotechnol; 2004; 7(4):182-96. PubMed ID: 15383716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate is excreted across the cytoplasmic membrane through the NCgl1221 channel of Corynebacterium glutamicum by passive diffusion.
    Hashimoto K; Murata J; Konishi T; Yabe I; Nakamatsu T; Kawasaki H
    Biosci Biotechnol Biochem; 2012; 76(7):1422-4. PubMed ID: 22785475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Succinate production from CO₂-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing.
    Lee J; Sim SJ; Bott M; Um Y; Oh MK; Woo HM
    Sci Rep; 2014 Jul; 4():5819. PubMed ID: 25056811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum.
    Youn JW; Jolkver E; Krämer R; Marin K; Wendisch VF
    J Bacteriol; 2009 Sep; 191(17):5480-8. PubMed ID: 19581365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum.
    Zhou Z; Wang C; Chen Y; Zhang K; Xu H; Cai H; Chen Z
    Biotechnol Prog; 2015; 31(1):12-9. PubMed ID: 25311136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum.
    Litsanov B; Kabus A; Brocker M; Bott M
    Microb Biotechnol; 2012 Jan; 5(1):116-28. PubMed ID: 22018023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of increased glutamate availability on L-ornithine production in Corynebacterium glutamicum.
    Hwang JH; Hwang GH; Cho JY
    J Microbiol Biotechnol; 2008 Apr; 18(4):704-10. PubMed ID: 18467864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production.
    Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM
    J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum.
    Engels S; Ludwig C; Schweitzer JE; Mack C; Bott M; Schaffer S
    Mol Microbiol; 2005 Jul; 57(2):576-91. PubMed ID: 15978086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.