BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20809135)

  • 1. Luminescence enhancement from silica-coated gold nanoparticle agglomerates following multi-photon excitation.
    Viarbitskaya S; Ryderfors L; Mikaelsson T; Mukhtar E; Johansson LB
    J Fluoresc; 2011 Jan; 21(1):257-64. PubMed ID: 20809135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminescence quantum yields of gold nanoparticles varying with excitation wavelengths.
    Cheng Y; Lu G; He Y; Shen H; Zhao J; Xia K; Gong Q
    Nanoscale; 2016 Jan; 8(4):2188-94. PubMed ID: 26731570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods.
    Abadeer NS; Brennan MR; Wilson WL; Murphy CJ
    ACS Nano; 2014 Aug; 8(8):8392-406. PubMed ID: 25062430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-photon excited luminescence of structural light enhancement in subwavelength SiO
    Wang W; Song S; Liu W; Xia T; Du G; Zhai X; Jin B
    Discov Nano; 2023 Jun; 18(1):85. PubMed ID: 37382861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Up-conversion luminescence of gold nanospheres when excited at nonsurface plasmon resonance wavelength by a continuous wave laser.
    Neupane B; Zhao L; Wang G
    Nano Lett; 2013 Sep; 13(9):4087-92. PubMed ID: 23914976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and time-gated luminescence bioimaging applications of long wavelength-excited silica-encapsulated europium nanoparticles.
    Tian L; Dai Z; Zhang L; Zhang R; Ye Z; Wu J; Jin D; Yuan J
    Nanoscale; 2012 Jun; 4(11):3551-7. PubMed ID: 22552488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot luminescence from gold nanoflowers and its application in high-density optical data storage.
    Zheng Y; Liu H; Xiang J; Dai Q; Ouyang M; Tie S; Lan S
    Opt Express; 2017 Apr; 25(8):9262-9275. PubMed ID: 28438002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From plasmon-induced luminescence enhancement in gold nanorods to plasmon-induced luminescence turn-off: a way to control reshaping.
    Molinaro C; Marguet S; Douillard L; Charra F; Fiorini-Debuisschert C
    Phys Chem Chem Phys; 2018 May; 20(17):12295-12302. PubMed ID: 29687806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocomposites containing silica-coated gold-silver nanocages and Yb-2,4-dimethoxyhematoporphyrin: multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis.
    Khlebtsov B; Panfilova E; Khanadeev V; Bibikova O; Terentyuk G; Ivanov A; Rumyantseva V; Shilov I; Ryabova A; Loshchenov V; Khlebtsov NG
    ACS Nano; 2011 Sep; 5(9):7077-89. PubMed ID: 21838309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Spectroscopic Properties and Microscopic Imaging of Thulium-Doped Upconversion Nanoparticles Excited at Different NIR-II Light.
    Peng T; Pu R; Wang B; Zhu Z; Liu K; Wang F; Wei W; Liu H; Zhan Q
    Biosensors (Basel); 2021 May; 11(5):. PubMed ID: 34068452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The two-photon excitation of SiO(2)-coated Y(2)O(3):Eu(3+) nanoparticles by a near-infrared femtosecond laser.
    Lü Q; Li A; Guo F; Sun L; Zhao L
    Nanotechnology; 2008 May; 19(20):205704. PubMed ID: 21825747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging.
    Wang S; Xi W; Cai F; Zhao X; Xu Z; Qian J; He S
    Theranostics; 2015; 5(3):251-66. PubMed ID: 25553113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced upconversion luminescence from ZnO/Zn hybrid nanostructures induced on a Zn foil by femtosecond laser ablation.
    Li H; Zhang CY; Li XF; Xiang J; Tie SL; Lan S
    Opt Express; 2015 Nov; 23(23):30118-26. PubMed ID: 26698492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon effects on two photon luminescence of gold nanorods.
    Wang DS; Hsu FY; Lin CW
    Opt Express; 2009 Jul; 17(14):11350-9. PubMed ID: 19582049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon coupling interactions and inhibition of nonlinear absorption in a complex system with Ag and Pt nanoparticles in silica.
    Bornacelli J; Torres-Torres C; Can-Uc B; Rangel-Rojo R; Oliver A
    Appl Opt; 2020 May; 59(13):D69-D75. PubMed ID: 32400626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles.
    Seemann KM; Kuhn B
    Biomed Opt Express; 2014 Jul; 5(7):2446-57. PubMed ID: 25071977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Resolved Luminescence Properties of Laser-Fabricated Nano-diamonds.
    Hao J; Pan L; An M; Dai Y; Gao B
    Nanoscale Res Lett; 2020 Aug; 15(1):168. PubMed ID: 32816127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation Conditions for Surface-Enhanced Hyper Raman Scattering With Biocompatible Gold Nanosubstrates.
    Dusa A; Madzharova F; Kneipp J
    Front Chem; 2021; 9():680905. PubMed ID: 34079791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.