These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20809302)

  • 21. Simultaneous fluorescence in situ hybridization of mRNA and rRNA for the detection of gene expression in environmental microbes.
    Pernthaler A; Pernthaler J
    Methods Enzymol; 2005; 397():352-71. PubMed ID: 16260302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation.
    Chaumeil J; Augui S; Chow JC; Heard E
    Methods Mol Biol; 2008; 463():297-308. PubMed ID: 18951174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oligonucleotide probes for RNA-targeted fluorescence in situ hybridization.
    Silverman AP; Kool ET
    Adv Clin Chem; 2007; 43():79-115. PubMed ID: 17249381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trypanosoma brucei: improved detection of nuclear transcripts reveals a genomic position effect on nuclearly accumulating NEO RNAs visualized in stably transformed cells.
    Köhler S
    Exp Parasitol; 1999 Aug; 92(4):249-62. PubMed ID: 10425153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contribution of growing RNA molecules to the nuclear transcripts foci observed by FISH.
    Jolly C; Robert-Nicoud M; Vourc'h C
    Exp Cell Res; 1998 Jan; 238(1):299-304. PubMed ID: 9457084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. mRNA-targeted fluorescent in situ hybridization (FISH) of Gram-negative bacteria without template amplification or tyramide signal amplification.
    Coleman JR; Culley DE; Chrisler WB; Brockman FJ
    J Microbiol Methods; 2007 Dec; 71(3):246-55. PubMed ID: 17949838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Chromera velia by fluorescence in situ hybridization.
    Morin-Adeline V; Foster C; Slapeta J
    FEMS Microbiol Lett; 2012 Mar; 328(2):144-9. PubMed ID: 22211939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of viable Yersinia pestis by fluorescence in situ hybridization using peptide nucleic acid probes.
    Kenny JH; Zhou Y; Schriefer ME; Bearden SW
    J Microbiol Methods; 2008 Oct; 75(2):293-301. PubMed ID: 18655809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ hybridization with 33P-labeled RNA probes for determination of cellular expression patterns of liver transcription factors in mouse embryos.
    Rausa FM; Ye H; Lim L; Duncan SA; Costa RH
    Methods; 1998 Sep; 16(1):29-41. PubMed ID: 9774514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification.
    Silahtaroglu AN; Nolting D; Dyrskjøt L; Berezikov E; Møller M; Tommerup N; Kauppinen S
    Nat Protoc; 2007; 2(10):2520-8. PubMed ID: 17947994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial consequences of defective processing of specific yeast mRNAs revealed by fluorescent in situ hybridization.
    Long RM; Elliott DJ; Stutz F; Rosbash M; Singer RH
    RNA; 1995 Dec; 1(10):1071-8. PubMed ID: 8595562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescence in situ hybridization on DNA halo preparations and extended chromatin fibres.
    Elcock LS; Bridger JM
    Methods Mol Biol; 2010; 659():21-31. PubMed ID: 20809301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stellaris® RNA Fluorescence In Situ Hybridization for the Simultaneous Detection of Immature and Mature Long Noncoding RNAs in Adherent Cells.
    Orjalo AV; Johansson HE
    Methods Mol Biol; 2016; 1402():119-134. PubMed ID: 26721487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence in situ hybridization (FISH), basic principles and methodology.
    Garimberti E; Tosi S
    Methods Mol Biol; 2010; 659():3-20. PubMed ID: 20809300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigating gene expression: in situ hybridization and reporter genes.
    Escalante R; Sastre L
    Methods Mol Biol; 2006; 346():247-60. PubMed ID: 16957295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of malignant cells in multiple myeloma bone marrow with immunoglobulin VH gene probes by fluorescent in situ hybridization and flow cytometry.
    Cao J; Vescio RA; Hong CH; Kim A; Lichtenstein AK; Berenson JR
    J Clin Invest; 1995 Mar; 95(3):964-72. PubMed ID: 7883997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FISH and immunofluorescence staining in Chlamydomonas.
    Uniacke J; Colón-Ramos D; Zerges W
    Methods Mol Biol; 2011; 714():15-29. PubMed ID: 21431732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression analysis of murine genes using in situ hybridization with radioactive and nonradioactively labeled RNA probes.
    Chotteau-Lelièvre A; Dollé P; Gofflot F
    Methods Mol Biol; 2006; 326():61-87. PubMed ID: 16780194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ functional gene analysis: recognition of individual genes by fluorescence in situ hybridization.
    Zwirglmaier K; Fichtl K; Ludwig W
    Methods Enzymol; 2005; 397():338-51. PubMed ID: 16260301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Show and tell: visualizing gene expression in living cells.
    Rafalska-Metcalf IU; Janicki SM
    J Cell Sci; 2007 Jul; 120(Pt 14):2301-7. PubMed ID: 17606985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.