These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 20809536)
1. Introduction and snapshot review: relating infectious disease transmission models to data. O'Neill PD Stat Med; 2010 Sep; 29(20):2069-77. PubMed ID: 20809536 [TBL] [Abstract][Full Text] [Related]
2. A symbolic investigation of superspreaders. McCaig C; Begon M; Norman R; Shankland C Bull Math Biol; 2011 Apr; 73(4):777-94. PubMed ID: 21181505 [TBL] [Abstract][Full Text] [Related]
4. Deterministic epidemic models with explicit household structure. House T; Keeling MJ Math Biosci; 2008 May; 213(1):29-39. PubMed ID: 18374370 [TBL] [Abstract][Full Text] [Related]
5. Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks. Yan P J Theor Biol; 2008 Mar; 251(2):238-52. PubMed ID: 18191153 [TBL] [Abstract][Full Text] [Related]
6. Estimating the transmission rate for a highly infectious disease. Becker NG; Hasofer AM Biometrics; 1998 Jun; 54(2):730-8. PubMed ID: 9629653 [TBL] [Abstract][Full Text] [Related]
7. Modeling the effects of carriers on transmission dynamics of infectious diseases. Kalajdzievska D; Li MY Math Biosci Eng; 2011 Jul; 8(3):711-22. PubMed ID: 21675806 [TBL] [Abstract][Full Text] [Related]
8. Models of infectious diseases in spatially heterogeneous environments. RodrÃguez DJ; Torres-Sorando L Bull Math Biol; 2001 May; 63(3):547-71. PubMed ID: 11374305 [TBL] [Abstract][Full Text] [Related]
9. Modelling infectious disease transmission with complex exposure pattern and sparse outcome data. Reilly M; Salim A; Lawlor E; Smith O; Temperley I; Pawitan Y Stat Med; 2004 Oct; 23(19):3013-32. PubMed ID: 15351958 [TBL] [Abstract][Full Text] [Related]
10. Saturation recovery leads to multiple endemic equilibria and backward bifurcation. Cui J; Mu X; Wan H J Theor Biol; 2008 Sep; 254(2):275-83. PubMed ID: 18586277 [TBL] [Abstract][Full Text] [Related]
11. Type and quantity of data needed for an early estimate of transmissibility when an infectious disease emerges. Becker NG; Wang D; Clements M Euro Surveill; 2010 Jul; 15(26):. PubMed ID: 20619130 [TBL] [Abstract][Full Text] [Related]
13. An SEIS epidemic model with transport-related infection. Wan H; Cui JA J Theor Biol; 2007 Aug; 247(3):507-24. PubMed ID: 17481666 [TBL] [Abstract][Full Text] [Related]
14. Modelling the effect of urbanization on the transmission of an infectious disease. Zhang P; Atkinson PM Math Biosci; 2008 Jan; 211(1):166-85. PubMed ID: 18068198 [TBL] [Abstract][Full Text] [Related]
15. The effect of time distribution shape on a complex epidemic model. Camitz M; Svensson A Bull Math Biol; 2009 Nov; 71(8):1902-13. PubMed ID: 19475454 [TBL] [Abstract][Full Text] [Related]
16. Epidemic modelling: aspects where stochasticity matters. Britton T; Lindenstrand D Math Biosci; 2009 Dec; 222(2):109-16. PubMed ID: 19837097 [TBL] [Abstract][Full Text] [Related]
17. Global properties of infectious disease models with nonlinear incidence. Korobeinikov A Bull Math Biol; 2007 Aug; 69(6):1871-86. PubMed ID: 17443392 [TBL] [Abstract][Full Text] [Related]
18. A simple explanation for the low impact of border control as a countermeasure to the spread of an infectious disease. Scalia Tomba G; Wallinga J Math Biosci; 2008; 214(1-2):70-2. PubMed ID: 18387639 [TBL] [Abstract][Full Text] [Related]
19. Some model based considerations on observing generation times for communicable diseases. Scalia Tomba G; Svensson A; Asikainen T; Giesecke J Math Biosci; 2010 Jan; 223(1):24-31. PubMed ID: 19854206 [TBL] [Abstract][Full Text] [Related]
20. A fully coupled, mechanistic model for infectious disease dynamics in a metapopulation: movement and epidemic duration. Jesse M; Ezanno P; Davis S; Heesterbeek JA J Theor Biol; 2008 Sep; 254(2):331-8. PubMed ID: 18577388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]