BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20809987)

  • 1. Matrix metalloproteinase-25 has a functional role in mouse secondary palate development and is a downstream target of TGF-β3.
    Brown GD; Nazarali AJ
    BMC Dev Biol; 2010 Sep; 10():93. PubMed ID: 20809987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGF-beta3-induced palatogenesis requires matrix metalloproteinases.
    Blavier L; Lazaryev A; Groffen J; Heisterkamp N; DeClerck YA; Kaartinen V
    Mol Biol Cell; 2001 May; 12(5):1457-66. PubMed ID: 11359935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering TGF-β3 function in medial edge epithelium specification and fusion during mouse secondary palate development.
    Jin JZ; Warner DR; Lu Q; Pisano MM; Greene RM; Ding J
    Dev Dyn; 2014 Dec; 243(12):1536-43. PubMed ID: 25104574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal and spatial expression of Hoxa-2 during murine palatogenesis.
    Nazarali A; Puthucode R; Leung V; Wolf L; Hao Z; Yeung J
    Cell Mol Neurobiol; 2000 Jun; 20(3):269-90. PubMed ID: 10789828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development.
    Lane J; Yumoto K; Azhar M; Ninomiya-Tsuji J; Inagaki M; Hu Y; Deng CX; Kim J; Mishina Y; Kaartinen V
    Dev Biol; 2015 Feb; 398(2):231-41. PubMed ID: 25523394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TGF-beta(3)-induced chondroitin sulphate proteoglycan mediates palatal shelf adhesion.
    Gato A; Martinez ML; Tudela C; Alonso I; Moro JA; Formoso MA; Ferguson MW; Martínez-Alvarez C
    Dev Biol; 2002 Oct; 250(2):393-405. PubMed ID: 12376112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal and spatial expression of Pax9 and Sonic hedgehog during development of normal mouse palates and cleft palates in TGF-beta3 null embryos.
    Sasaki Y; O'Kane S; Dixon J; Dixon MJ; Ferguson MW
    Arch Oral Biol; 2007 Mar; 52(3):260-7. PubMed ID: 17097601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of insulin-like growth factors I and II (IGF I and II), mRNA, peptide and binding protein 1 during mouse palate development: comparison with TGF beta peptide distribution.
    Ferguson MW; Sharpe PM; Thomas BL; Beck F
    J Anat; 1992 Oct; 181 ( Pt 2)(Pt 2):219-38. PubMed ID: 1284245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional role of transforming growth factor-beta type III receptor during palatal fusion.
    Nakajima A; Ito Y; Asano M; Maeno M; Iwata K; Mitsui N; Shimizu N; Cui XM; Shuler CF
    Dev Dyn; 2007 Mar; 236(3):791-801. PubMed ID: 17295310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunohistochemical localization of TGF-beta type II receptor and TGF-beta3 during palatogenesis in vivo and in vitro.
    Cui XM; Warburton D; Zhao J; Crowe DL; Shuler CF
    Int J Dev Biol; 1998 Sep; 42(6):817-20. PubMed ID: 9727838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific expression of gelatinolytic activity during morphogenesis of the secondary palate in the mouse embryo.
    Gkantidis N; Blumer S; Katsaros C; Graf D; Chiquet M
    PLoS One; 2012; 7(10):e47762. PubMed ID: 23091646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of medial-edge epithelium cell adhesion in two Tgf-beta3 null mouse strains.
    Martínez-Sanz E; Del Río A; Barrio C; Murillo J; Maldonado E; Garcillán B; Amorós M; Fuerte T; Fernández A; Trinidad E; Rabadán MA; López Y; Martínez ML; Martínez-Alvarez C
    Differentiation; 2008 Apr; 76(4):417-30. PubMed ID: 18431835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional role of TGF-β receptors during palatal fusion in vitro.
    Nakajima A; Ito Y; Tanaka E; Sano R; Karasawa Y; Maeno M; Iwata K; Shimizu N; Shuler CF
    Arch Oral Biol; 2014 Nov; 59(11):1192-204. PubMed ID: 25105252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Follistatin antagonizes transforming growth factor-beta3-induced epithelial-mesenchymal transition in vitro: implications for murine palatal development supported by microarray analysis.
    Nogai H; Rosowski M; Grün J; Rietz A; Debus N; Schmidt G; Lauster C; Janitz M; Vortkamp A; Lauster R
    Differentiation; 2008 Apr; 76(4):404-16. PubMed ID: 18028449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporospatial distribution of matrix metalloproteinase and tissue inhibitors of matrix metalloproteinases during murine secondary palate morphogenesis.
    Morris-Wiman J; Burch H; Basco E
    Anat Embryol (Berl); 2000 Aug; 202(2):129-41. PubMed ID: 10985432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward pathogenesis of Apert cleft palate: FGF, FGFR, and TGF beta genes are differentially expressed in sequential stages of human palatal shelf fusion.
    Britto JA; Evans RD; Hayward RD; Jones BM
    Cleft Palate Craniofac J; 2002 May; 39(3):332-40. PubMed ID: 12019011
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Okello DO; Iyyanar PPR; Kulyk WM; Smith TM; Lozanoff S; Ji S; Nazarali AJ
    Front Physiol; 2017; 8():955. PubMed ID: 29218017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The expression of TGF-β3 for epithelial-mesenchyme transdifferentiated MEE in palatogenesis.
    Nakajima A; Tanaka E; Ito Y; Maeno M; Iwata K; Shimizu N; Shuler CF
    J Mol Histol; 2010 Dec; 41(6):343-55. PubMed ID: 20967564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bulging medial edge epithelial cells and palatal fusion.
    Martínez-Alvarez C; Bonelli R; Tudela C; Gato A; Mena J; O'Kane S; Ferguson MW
    Int J Dev Biol; 2000 Apr; 44(3):331-5. PubMed ID: 10853831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional divergence of palate medial edge epithelium along the anterior to posterior axis.
    Jin JZ; Warner DR; Ding J
    Int J Dev Biol; 2014; 58(9):713-7. PubMed ID: 25896208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.