BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20810468)

  • 1. Rapid microsatellite development for water striders by next-generation sequencing.
    Perry JC; Rowe L
    J Hered; 2011; 102(1):125-9. PubMed ID: 20810468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymorphic microsatellite loci from an indigenous Asian fungus-growing termite, Macrotermes gilvus (Blattodea: Termitidae) and cross amplification in related taxa.
    Singham GV; Vargo EL; Booth W; Othman AS; Lee CY
    Environ Entomol; 2012 Apr; 41(2):426-31. PubMed ID: 22507019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid development and screening of microsatellite loci for Artibeus lituratus and their utility for six related species within Phyllostomidae.
    McCulloch ES; Stevens RD
    Mol Ecol Resour; 2011 Sep; 11(5):903-13. PubMed ID: 21592315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of microsatellite loci and repeat density in the gooseneck barnacle, Pollicipes elegans, using next generation sequencing.
    Plough LV; Marko PB
    J Hered; 2014; 105(1):136-42. PubMed ID: 24115106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost-effective, species-specific microsatellite development for the endangered Dwarf Bulrush (Typha minima) using next-generation sequencing technology.
    Csencsics D; Brodbeck S; Holderegger R
    J Hered; 2010; 101(6):789-93. PubMed ID: 20562212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing.
    Schoebel CN; Brodbeck S; Buehler D; Cornejo C; Gajurel J; Hartikainen H; Keller D; Leys M; Ríčanová S; Segelbacher G; Werth S; Csencsics D
    J Evol Biol; 2013 Mar; 26(3):600-11. PubMed ID: 23331991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing.
    Abdelkrim J; Robertson B; Stanton JA; Gemmell N
    Biotechniques; 2009 Mar; 46(3):185-92. PubMed ID: 19317661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When technology meets conservation: increased microsatellite marker production using 454 genome sequencing on the endangered Okaloosa Darter (Etheostoma okaloosae).
    Saarinen EV; Austin JD
    J Hered; 2010; 101(6):784-8. PubMed ID: 20624755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid microsatellite marker development for African mahogany (Khaya senegalensis, Meliaceae) using next-generation sequencing and assessment of its intra-specific genetic diversity.
    Karan M; Evans DS; Reilly D; Schulte K; Wright C; Innes D; Holton TA; Nikles DG; Dickinson GR
    Mol Ecol Resour; 2012 Mar; 12(2):344-53. PubMed ID: 22018142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rise of the machines--recommendations for ecologists when using next generation sequencing for microsatellite development.
    Gardner MG; Fitch AJ; Bertozzi T; Lowe AJ
    Mol Ecol Resour; 2011 Nov; 11(6):1093-101. PubMed ID: 21679314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput identification of informative nuclear loci for shallow-scale phylogenetics and phylogeography.
    Lemmon AR; Lemmon EM
    Syst Biol; 2012 Oct; 61(5):745-61. PubMed ID: 22610088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and multiplexing of microsatellite markers using pyrosequencing in the clonal plant Comarum palustre (Rosaceae).
    Somme L; Raabová J; Jacquemart AL; Raspé O
    Mol Ecol Resour; 2012 Jan; 12(1):91-7. PubMed ID: 21951679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microsatellite marker development and analysis in the eastern oyster (Crassostrea virginica): confirmation of null alleles and non-Mendelian segregation ratios.
    Reece KS; Ribeiro WL; Gaffney PM; Carnegie RB; Allen SK
    J Hered; 2004; 95(4):346-52. PubMed ID: 15247315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid isolation and cross-amplification of microsatellite markers in Plectritis congesta (Valerianaceae) with 454 sequencing.
    McEwen JR; Vamosi JC; Rogers SM
    Am J Bot; 2011 Dec; 98(12):e369-71. PubMed ID: 22106438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Successful development of microsatellite markers in a challenging species: the horizontal borer Austroplatypus incompertus (Coleoptera: Curculionidae).
    Smith S; Joss T; Stow A
    Bull Entomol Res; 2011 Oct; 101(5):551-5. PubMed ID: 21477421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A panel of 20 highly variable microsatellite polymorphisms in rhesus macaques (Macaca mulatta) selected for pedigree or population genetic analysis.
    Rogers J; Bergstrom M; Garcia R; Kaplan J; Arya A; Novakowski L; Johnson Z; Vinson A; Shelledy W
    Am J Primatol; 2005 Nov; 67(3):377-83. PubMed ID: 16287107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced cross-species utility of conserved microsatellite markers in shorebirds.
    Küpper C; Burke T; Székely T; Dawson DA
    BMC Genomics; 2008 Oct; 9():502. PubMed ID: 18950482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the 454 pyrosequencing-based technique in the development of nuclear microsatellite loci in the alpine plant Arabis alpina (Brassicaceae).
    Buehler D; Graf R; Holderegger R; Gugerli F
    Am J Bot; 2011 May; 98(5):e103-5. PubMed ID: 21613056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsatellite discovery by deep sequencing of enriched genomic libraries.
    Santana Q; Coetzee M; Steenkamp E; Mlonyeni O; Hammond G; Wingfield M; Wingfield B
    Biotechniques; 2009 Mar; 46(3):217-23. PubMed ID: 19317665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rapid and cost-effective approach for the development of polymorphic microsatellites in non-model species using paired-end RAD sequencing.
    Xue DX; Li YL; Liu JX
    Mol Genet Genomics; 2017 Oct; 292(5):1165-1174. PubMed ID: 28634825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.