BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20810641)

  • 1. Two-photon fluorescence microscopy of cerebral hemodynamics.
    Lindvere L; Dorr A; Stefanovic B
    Cold Spring Harb Protoc; 2010 Sep; 2010(9):pdb.prot5494. PubMed ID: 20810641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative estimates of stimulation-induced perfusion response using two-photon fluorescence microscopy of cortical microvascular networks.
    Chinta LV; Lindvere L; Dorr A; Sahota B; Sled JG; Stefanovic B
    Neuroimage; 2012 Jul; 61(3):517-24. PubMed ID: 22521258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral microvascular network geometry changes in response to functional stimulation.
    Lindvere L; Janik R; Dorr A; Chartash D; Sahota B; Sled JG; Stefanovic B
    Neuroimage; 2013 May; 71():248-59. PubMed ID: 23353600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous, live imaging of cortical spreading depression and associated cerebral blood flow changes, by combining voltage-sensitive dye and laser speckle contrast methods.
    Obrenovitch TP; Chen S; Farkas E
    Neuroimage; 2009 Mar; 45(1):68-74. PubMed ID: 19100842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microvascular perfusion during focal vasogenic brain edema: a scanning laser fluorescence microscopy study.
    Lindsberg PJ; Sirén AL; Hallenbeck JM
    Microvasc Res; 1997 Jan; 53(1):92-103. PubMed ID: 9056479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chapter 10. In vivo measurements of blood flow and glial cell function with two-photon laser-scanning microscopy.
    Helmchen F; Kleinfeld D
    Methods Enzymol; 2008; 444():231-54. PubMed ID: 19007667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging.
    Sun X; Wang Y; Chen S; Luo W; Li P; Luo Q
    Neuroimage; 2011 Aug; 57(3):873-84. PubMed ID: 21624475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity.
    Sheth SA; Nemoto M; Guiou MW; Walker MA; Toga AW
    J Cereb Blood Flow Metab; 2005 Jul; 25(7):830-41. PubMed ID: 15744249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring neuronal population activity using 3D laser scanning.
    Kampa BM; Göbel W; Helmchen F
    Cold Spring Harb Protoc; 2011 Nov; 2011(11):1340-9. PubMed ID: 22046041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence imaging of changes in intracellular chloride in living brain slices.
    Inglefield JR; Schwartz-Bloom RD
    Methods; 1999 Jun; 18(2):197-203. PubMed ID: 10356351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging brain hemodynamic changes during rat forepaw electrical stimulation using functional photoacoustic microscopy.
    Liao LD; Li ML; Lai HY; Shih YY; Lo YC; Tsang S; Chao PC; Lin CT; Jaw FS; Chen YY
    Neuroimage; 2010 Aug; 52(2):562-70. PubMed ID: 20362680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative in vivo imaging of entire embryos with Digital Scanned Laser Light Sheet Fluorescence Microscopy.
    Keller PJ; Stelzer EH
    Curr Opin Neurobiol; 2008 Dec; 18(6):624-32. PubMed ID: 19375303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo two-photon laser-scanning microscopy of Ca2+ dynamics in visual motion-sensitive neurons.
    Kalb J; Nielsen T; Fricke M; Egelhaaf M; Kurtz R
    Biochem Biophys Res Commun; 2004 Apr; 316(2):341-7. PubMed ID: 15020223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison study of detecting gold nanorods in living cells with confocal reflectance microscopy and two-photon fluorescence microscopy.
    Zhou Y; Wu X; Wang T; Ming T; Wang PN; Zhou LW; Chen JY
    J Microsc; 2010 Feb; 237(2):200-7. PubMed ID: 20096050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital scanned laser light sheet fluorescence microscopy.
    Keller PJ; Stelzer EH
    Cold Spring Harb Protoc; 2010 May; 2010(5):pdb.top78. PubMed ID: 20439423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon imaging in living brain slices.
    Mainen ZF; Maletic-Savatic M; Shi SH; Hayashi Y; Malinow R; Svoboda K
    Methods; 1999 Jun; 18(2):231-9, 181. PubMed ID: 10356355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex.
    Ances BM; Greenberg JH; Detre JA
    Neuroimage; 1999 Dec; 10(6):716-23. PubMed ID: 10600417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength division scanning for two-photon excitation fluorescence imaging.
    Shi K; Yin S; Liu Z
    J Microsc; 2006 Aug; 223(Pt 2):83-7. PubMed ID: 16911068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of multiline two-photon microscopy to functional in vivo imaging.
    Kurtz R; Fricke M; Kalb J; Tinnefeld P; Sauer M
    J Neurosci Methods; 2006 Mar; 151(2):276-86. PubMed ID: 16442636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional reconstruction of the rat brain cortical microcirculation in vivo.
    Dirnagl U; Villringer A; Gebhardt R; Haberl RL; Schmiedek P; Einhäupl KM
    J Cereb Blood Flow Metab; 1991 May; 11(3):353-60. PubMed ID: 2016343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.