These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 20811091)

  • 1. Design of a robust EMG sensing interface for pattern classification.
    Huang H; Zhang F; Sun YL; He H
    J Neural Eng; 2010 Oct; 7(5):056005. PubMed ID: 20811091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition.
    Zhang X; Huang H
    J Neuroeng Rehabil; 2015 Feb; 12():18. PubMed ID: 25888946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time implementation of a self-recovery EMG pattern recognition interface for artificial arms.
    Zhang X; Huang H; Yang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5926-9. PubMed ID: 24111088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A strategy for identifying locomotion modes using surface electromyography.
    Huang H; Kuiken TA; Lipschutz RD
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):65-73. PubMed ID: 19224720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intuitive control of a powered prosthetic leg during ambulation: a randomized clinical trial.
    Hargrove LJ; Young AJ; Simon AM; Fey NP; Lipschutz RD; Finucane SB; Halsne EG; Ingraham KA; Kuiken TA
    JAMA; 2015 Jun; 313(22):2244-52. PubMed ID: 26057285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotion mode classification using a wearable capacitive sensing system.
    Chen B; Zheng E; Fan X; Liang T; Wang Q; Wei K; Wang L
    IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):744-55. PubMed ID: 23694674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of stability of time-domain features for electromyographic pattern recognition.
    Tkach D; Huang H; Kuiken TA
    J Neuroeng Rehabil; 2010 May; 7():21. PubMed ID: 20492713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface.
    Huang H; Zhou P; Li G; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2008 Feb; 16(1):37-45. PubMed ID: 18303804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography.
    Al-Timemy AH; Bugmann G; Escudero J; Outram N
    IEEE J Biomed Health Inform; 2013 May; 17(3):608-18. PubMed ID: 24592463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol.
    Stango A; Negro F; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):189-98. PubMed ID: 25389242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.
    Daley H; Englehart K; Hargrove L; Kuruganti U
    J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion.
    Huang H; Zhang F; Hargrove LJ; Dou Z; Rogers DR; Englehart KB
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2867-75. PubMed ID: 21768042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of time on EMG classification of hand motions in able-bodied and transradial amputees.
    Waris A; Niazi IK; Jamil M; Gilani O; Englehart K; Jensen W; Shafique M; Kamavuako EN
    J Electromyogr Kinesiol; 2018 Jun; 40():72-80. PubMed ID: 29689443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions.
    Waris A; Niazi IK; Jamil M; Englehart K; Jensen W; Kamavuako EN
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1526-1534. PubMed ID: 30106701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial filtering improves EMG classification accuracy following targeted muscle reinnervation.
    Huang H; Zhou P; Li G; Kuiken T
    Ann Biomed Eng; 2009 Sep; 37(9):1849-57. PubMed ID: 19526342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Validation of a Sensor Fault-Tolerant Module for Real-Time High-Density EMG Pattern Recognition.
    Reynolds DJ; Shazar A; Zhang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6738-6742. PubMed ID: 34892654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on Interaction Between Temporal and Spatial Information in Classification of EMG Signals for Myoelectric Prostheses.
    Menon R; Di Caterina G; Lakany H; Petropoulakis L; Conway BA; Soraghan JJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1832-1842. PubMed ID: 28436879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A special purpose embedded system for neural machine interface for artificial legs.
    Zhang X; Huang H; Yang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5207-10. PubMed ID: 22255511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the performance of a neural-machine interface for prosthetic legs using adaptive pattern classifiers.
    Du L; Zhang F; He H; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1571-4. PubMed ID: 24110001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.