BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 20811124)

  • 1. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification.
    Yildirim ED; Besunder R; Pappas D; Allen F; Güçeri S; Sun W
    Biofabrication; 2010 Mar; 2(1):014109. PubMed ID: 20811124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.
    Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W
    Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds.
    Domingos M; Intranuovo F; Gloria A; Gristina R; Ambrosio L; Bártolo PJ; Favia P
    Acta Biomater; 2013 Apr; 9(4):5997-6005. PubMed ID: 23313115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new route to produce starch-based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation.
    Tuzlakoglu K; Pashkuleva I; Rodrigues MT; Gomes ME; van Lenthe GH; Müller R; Reis RL
    J Biomed Mater Res A; 2010 Jan; 92(1):369-77. PubMed ID: 19191314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration.
    Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoblast behavior on polytetrafluoroethylene modified by long pulse, high frequency oxygen plasma immersion ion implantation.
    Wang H; Kwok DT; Wang W; Wu Z; Tong L; Zhang Y; Chu PK
    Biomaterials; 2010 Jan; 31(3):413-9. PubMed ID: 19811820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro.
    Shor L; Güçeri S; Wen X; Gandhi M; Sun W
    Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional protein-encapsulated polycaprolactone scaffolds: fabrication and in vitro assessment for tissue engineering.
    Ozkan S; Kalyon DM; Yu X; McKelvey CA; Lowinger M
    Biomaterials; 2009 Sep; 30(26):4336-47. PubMed ID: 19481253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study.
    López-Pérez PM; da Silva RM; Sousa RA; Pashkuleva I; Reis RL
    Acta Biomater; 2010 Sep; 6(9):3704-12. PubMed ID: 20226283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration.
    Van Bael S; Desmet T; Chai YC; Pyka G; Dubruel P; Kruth JP; Schrooten J
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3404-12. PubMed ID: 23706227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds.
    Kim HW; Kim HE; Salih V
    Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly roughened polycaprolactone surfaces using oxygen plasma-etching and in vitro mineralization for bone tissue regeneration: fabrication, characterization, and cellular activities.
    Kim Y; Kim G
    Colloids Surf B Biointerfaces; 2015 Jan; 125():181-9. PubMed ID: 25486326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration.
    Horii A; Wang X; Gelain F; Zhang S
    PLoS One; 2007 Feb; 2(2):e190. PubMed ID: 17285144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT
    J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-ε-caprolactone scaffolds in osteogenic tissue engineering.
    Declercq HA; Desmet T; Berneel EE; Dubruel P; Cornelissen MJ
    Acta Biomater; 2013 Aug; 9(8):7699-708. PubMed ID: 23669624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the biological response of endothelial and fibroblast cells cultured on synthetic scaffolds with various hydrophilic/hydrophobic ratios: influence of fibronectin adsorption and conformation.
    Campillo-Fernández AJ; Unger RE; Peters K; Halstenberg S; Santos M; Salmerón Sánchez M; Meseguer Dueñas JM; Monleón Pradas M; Gómez Ribelles JL; Kirkpatrick CJ
    Tissue Eng Part A; 2009 Jun; 15(6):1331-41. PubMed ID: 18976156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of different sterilization methods on the physico-chemical and bioresponsive properties of plasma-treated polycaprolactone films.
    Ghobeira R; Philips C; Declercq H; Cools P; De Geyter N; Cornelissen R; Morent R
    Biomed Mater; 2017 Jan; 12(1):015017. PubMed ID: 28117304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.