These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

688 related articles for article (PubMed ID: 20811127)

  • 41. Scaffold-free: A developing technique in field of tissue engineering.
    Alblawi A; Ranjani AS; Yasmin H; Gupta S; Bit A; Rahimi-Gorji M
    Comput Methods Programs Biomed; 2020 Mar; 185():105148. PubMed ID: 31678793
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In-silico analysis on biofabricating vascular networks using kinetic Monte Carlo simulations.
    Sun Y; Yang X; Wang Q
    Biofabrication; 2014 Mar; 6(1):015008. PubMed ID: 24429898
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective.
    Lynch CR; Kondiah PPD; Choonara YE
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33925886
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels.
    Rutz AL; Hyland KE; Jakus AE; Burghardt WR; Shah RN
    Adv Mater; 2015 Mar; 27(9):1607-14. PubMed ID: 25641220
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Importance of Interfaces in Multi-Material Biofabricated Tissue Structures.
    Viola M; Piluso S; Groll J; Vermonden T; Malda J; Castilho M
    Adv Healthc Mater; 2021 Nov; 10(21):e2101021. PubMed ID: 34510824
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering.
    Lee JY; Choi B; Wu B; Lee M
    Biofabrication; 2013 Dec; 5(4):045003. PubMed ID: 24060622
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D Printing of Extracellular Matrix-Based Multicomponent, All-Natural, Highly Elastic, and Functional Materials toward Vascular Tissue Engineering.
    Isik M; Karakaya E; Arslan TS; Atila D; Erdogan YK; Arslan YE; Eskizengin H; Eylem CC; Nemutlu E; Ercan B; D'Este M; Okesola BO; Derkus B
    Adv Healthc Mater; 2023 Aug; 12(20):e2203044. PubMed ID: 37014809
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stem Cells and Extrusion 3D Printing for Hyaline Cartilage Engineering.
    Messaoudi O; Henrionnet C; Bourge K; Loeuille D; Gillet P; Pinzano A
    Cells; 2020 Dec; 10(1):. PubMed ID: 33374921
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expanding Embedded 3D Bioprinting Capability for Engineering Complex Organs with Freeform Vascular Networks.
    Fang Y; Guo Y; Wu B; Liu Z; Ye M; Xu Y; Ji M; Chen L; Lu B; Nie K; Wang Z; Luo J; Zhang T; Sun W; Xiong Z
    Adv Mater; 2023 Jun; 35(22):e2205082. PubMed ID: 36796025
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?
    Castilho M; de Ruijter M; Beirne S; Villette CC; Ito K; Wallace GG; Malda J
    Trends Biotechnol; 2020 Dec; 38(12):1316-1328. PubMed ID: 32466965
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication of 3D Printing Scaffold with Porcine Skin Decellularized Bio-Ink for Soft Tissue Engineering.
    Lee SJ; Lee JH; Park J; Kim WD; Park SA
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32785023
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Emerging Technologies in Multi-Material Bioprinting.
    Ravanbakhsh H; Karamzadeh V; Bao G; Mongeau L; Juncker D; Zhang YS
    Adv Mater; 2021 Dec; 33(49):e2104730. PubMed ID: 34596923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Overview of Current Advances in Extrusion Bioprinting for Skin Applications.
    Perez-Valle A; Del Amo C; Andia I
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32932676
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biofabrication of small diameter tissue-engineered vascular grafts.
    Weekes A; Bartnikowski N; Pinto N; Jenkins J; Meinert C; Klein TJ
    Acta Biomater; 2022 Jan; 138():92-111. PubMed ID: 34781026
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomimetic Layer-by-Layer Self-Assembly of Nanofilms, Nanocoatings, and 3D Scaffolds for Tissue Engineering.
    Zhang S; Xing M; Li B
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29865178
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration.
    Zhang M; Lin R; Wang X; Xue J; Deng C; Feng C; Zhuang H; Ma J; Qin C; Wan L; Chang J; Wu C
    Sci Adv; 2020 Mar; 6(12):eaaz6725. PubMed ID: 32219170
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink.
    Wu Y; Wenger A; Golzar H; Tang XS
    Sci Rep; 2020 Nov; 10(1):20648. PubMed ID: 33244046
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues.
    de Melo BAG; Jodat YA; Cruz EM; Benincasa JC; Shin SR; Porcionatto MA
    Acta Biomater; 2020 Nov; 117():60-76. PubMed ID: 32949823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.