These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Xu T; Gregory CA; Molnar P; Cui X; Jalota S; Bhaduri SB; Boland T Biomaterials; 2006 Jul; 27(19):3580-8. PubMed ID: 16516288 [TBL] [Abstract][Full Text] [Related]
6. Substrate stiffness influences high resolution printing of living cells with an ink-jet system. Tirella A; Vozzi F; De Maria C; Vozzi G; Sandri T; Sassano D; Cognolato L; Ahluwalia A J Biosci Bioeng; 2011 Jul; 112(1):79-85. PubMed ID: 21497548 [TBL] [Abstract][Full Text] [Related]
7. Cell micropatterning on an albumin-based substrate using an inkjet printing technique. Yamazoe H; Tanabe T J Biomed Mater Res A; 2009 Dec; 91(4):1202-9. PubMed ID: 19148930 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional bioprinting of rat embryonic neural cells. Lee W; Pinckney J; Lee V; Lee JH; Fischer K; Polio S; Park JK; Yoo SS Neuroreport; 2009 May; 20(8):798-803. PubMed ID: 19369905 [TBL] [Abstract][Full Text] [Related]
9. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Lee YB; Polio S; Lee W; Dai G; Menon L; Carroll RS; Yoo SS Exp Neurol; 2010 Jun; 223(2):645-52. PubMed ID: 20211178 [TBL] [Abstract][Full Text] [Related]
10. Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Ilkhanizadeh S; Teixeira AI; Hermanson O Biomaterials; 2007 Sep; 28(27):3936-43. PubMed ID: 17576007 [TBL] [Abstract][Full Text] [Related]
11. Inkjet printing of viable mammalian cells. Xu T; Jin J; Gregory C; Hickman JJ; Boland T Biomaterials; 2005 Jan; 26(1):93-9. PubMed ID: 15193884 [TBL] [Abstract][Full Text] [Related]
12. The impact of fabrication parameters and substrate stiffness in direct writing of living constructs. Tirella A; Ahluwalia A Biotechnol Prog; 2012; 28(5):1315-20. PubMed ID: 22736619 [TBL] [Abstract][Full Text] [Related]
13. Human microvasculature fabrication using thermal inkjet printing technology. Cui X; Boland T Biomaterials; 2009 Oct; 30(31):6221-7. PubMed ID: 19695697 [TBL] [Abstract][Full Text] [Related]
14. Increased mixing improves hydrogel homogeneity and quality of three-dimensional printed constructs. Cohen DL; Lo W; Tsavaris A; Peng D; Lipson H; Bonassar LJ Tissue Eng Part C Methods; 2011 Feb; 17(2):239-48. PubMed ID: 20822480 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique. Zhang C; Wen X; Vyavahare NR; Boland T Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156 [TBL] [Abstract][Full Text] [Related]
16. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Faulkner-Jones A; Greenhough S; King JA; Gardner J; Courtney A; Shu W Biofabrication; 2013 Mar; 5(1):015013. PubMed ID: 23380571 [TBL] [Abstract][Full Text] [Related]
17. Bio-electrospraying: A potentially safe technique for delivering progenitor cells. Sahoo S; Lee WC; Goh JC; Toh SL Biotechnol Bioeng; 2010 Jul; 106(4):690-8. PubMed ID: 20229515 [TBL] [Abstract][Full Text] [Related]
19. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering. Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181 [TBL] [Abstract][Full Text] [Related]
20. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. Nishiyama Y; Nakamura M; Henmi C; Yamaguchi K; Mochizuki S; Nakagawa H; Takiura K J Biomech Eng; 2009 Mar; 131(3):035001. PubMed ID: 19154078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]