BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20811131)

  • 1. Effects of surfactant and gentle agitation on inkjet dispensing of living cells.
    Parsa S; Gupta M; Loizeau F; Cheung KC
    Biofabrication; 2010 Jun; 2(2):025003. PubMed ID: 20811131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing.
    Saunders RE; Gough JE; Derby B
    Biomaterials; 2008 Jan; 29(2):193-203. PubMed ID: 17936351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet printing for high-throughput cell patterning.
    Roth EA; Xu T; Das M; Gregory C; Hickman JJ; Boland T
    Biomaterials; 2004 Aug; 25(17):3707-15. PubMed ID: 15020146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving piezoelectric cell printing accuracy and reliability through neutral buoyancy of suspensions.
    Chahal D; Ahmadi A; Cheung KC
    Biotechnol Bioeng; 2012 Nov; 109(11):2932-40. PubMed ID: 22627805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viability and electrophysiology of neural cell structures generated by the inkjet printing method.
    Xu T; Gregory CA; Molnar P; Cui X; Jalota S; Bhaduri SB; Boland T
    Biomaterials; 2006 Jul; 27(19):3580-8. PubMed ID: 16516288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate stiffness influences high resolution printing of living cells with an ink-jet system.
    Tirella A; Vozzi F; De Maria C; Vozzi G; Sandri T; Sassano D; Cognolato L; Ahluwalia A
    J Biosci Bioeng; 2011 Jul; 112(1):79-85. PubMed ID: 21497548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell micropatterning on an albumin-based substrate using an inkjet printing technique.
    Yamazoe H; Tanabe T
    J Biomed Mater Res A; 2009 Dec; 91(4):1202-9. PubMed ID: 19148930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional bioprinting of rat embryonic neural cells.
    Lee W; Pinckney J; Lee V; Lee JH; Fischer K; Polio S; Park JK; Yoo SS
    Neuroreport; 2009 May; 20(8):798-803. PubMed ID: 19369905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture.
    Lee YB; Polio S; Lee W; Dai G; Menon L; Carroll RS; Yoo SS
    Exp Neurol; 2010 Jun; 223(2):645-52. PubMed ID: 20211178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation.
    Ilkhanizadeh S; Teixeira AI; Hermanson O
    Biomaterials; 2007 Sep; 28(27):3936-43. PubMed ID: 17576007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inkjet printing of viable mammalian cells.
    Xu T; Jin J; Gregory C; Hickman JJ; Boland T
    Biomaterials; 2005 Jan; 26(1):93-9. PubMed ID: 15193884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of fabrication parameters and substrate stiffness in direct writing of living constructs.
    Tirella A; Ahluwalia A
    Biotechnol Prog; 2012; 28(5):1315-20. PubMed ID: 22736619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human microvasculature fabrication using thermal inkjet printing technology.
    Cui X; Boland T
    Biomaterials; 2009 Oct; 30(31):6221-7. PubMed ID: 19695697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased mixing improves hydrogel homogeneity and quality of three-dimensional printed constructs.
    Cohen DL; Lo W; Tsavaris A; Peng D; Lipson H; Bonassar LJ
    Tissue Eng Part C Methods; 2011 Feb; 17(2):239-48. PubMed ID: 20822480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates.
    Faulkner-Jones A; Greenhough S; King JA; Gardner J; Courtney A; Shu W
    Biofabrication; 2013 Mar; 5(1):015013. PubMed ID: 23380571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-electrospraying: A potentially safe technique for delivering progenitor cells.
    Sahoo S; Lee WC; Goh JC; Toh SL
    Biotechnol Bioeng; 2010 Jul; 106(4):690-8. PubMed ID: 20229515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes.
    Xu C; Chai W; Huang Y; Markwald RR
    Biotechnol Bioeng; 2012 Dec; 109(12):3152-60. PubMed ID: 22767299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering.
    Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN
    Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology.
    Nishiyama Y; Nakamura M; Henmi C; Yamaguchi K; Mochizuki S; Nakagawa H; Takiura K
    J Biomech Eng; 2009 Mar; 131(3):035001. PubMed ID: 19154078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.