These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 20811324)
1. Simultaneous FMRI and electrophysiology in the rodent brain. Pan WJ; Thompson G; Magnuson M; Majeed W; Jaeger D; Keilholz S J Vis Exp; 2010 Aug; (42):. PubMed ID: 20811324 [TBL] [Abstract][Full Text] [Related]
2. Longitudinal observations using simultaneous fMRI, multiple channel electrophysiology recording, and chemical microiontophoresis in the rat brain. Jaime S; Cavazos JE; Yang Y; Lu H J Neurosci Methods; 2018 Aug; 306():68-76. PubMed ID: 29778509 [TBL] [Abstract][Full Text] [Related]
3. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Logothetis NK Philos Trans R Soc Lond B Biol Sci; 2002 Aug; 357(1424):1003-37. PubMed ID: 12217171 [TBL] [Abstract][Full Text] [Related]
4. Broadband local field potentials correlate with spontaneous fluctuations in functional magnetic resonance imaging signals in the rat somatosensory cortex under isoflurane anesthesia. Pan WJ; Thompson G; Magnuson M; Majeed W; Jaeger D; Keilholz S Brain Connect; 2011; 1(2):119-31. PubMed ID: 22433008 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous GCaMP6-based fiber photometry and fMRI in rats. Liang Z; Ma Y; Watson GDR; Zhang N J Neurosci Methods; 2017 Sep; 289():31-38. PubMed ID: 28687521 [TBL] [Abstract][Full Text] [Related]
6. Adaptive and Wireless Recordings of Electrophysiological Signals During Concurrent Magnetic Resonance Imaging. Mandal R; Babaria N; Jiayue Cao ; Zhongming Liu IEEE Trans Biomed Eng; 2019 Jun; 66(6):1649-1657. PubMed ID: 30369431 [TBL] [Abstract][Full Text] [Related]
7. A method for direct thalamic stimulation in fMRI studies using a glass-coated carbon fiber electrode. Shyu BC; Lin CY; Sun JJ; Sylantyev S; Chang C J Neurosci Methods; 2004 Aug; 137(1):123-31. PubMed ID: 15196834 [TBL] [Abstract][Full Text] [Related]
8. Functional MRI at 1.5 tesla: a comparison of the blood oxygenation level-dependent signal and electrophysiology. Disbrow EA; Slutsky DA; Roberts TP; Krubitzer LA Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9718-23. PubMed ID: 10931954 [TBL] [Abstract][Full Text] [Related]
9. Increased blood oxygen level-dependent (BOLD) sensitivity in the mouse somatosensory cortex during electrical forepaw stimulation using a cryogenic radiofrequency probe. Baltes C; Bosshard S; Mueggler T; Ratering D; Rudin M NMR Biomed; 2011 May; 24(4):439-46. PubMed ID: 22945293 [TBL] [Abstract][Full Text] [Related]
10. A Polymer Thick Film on an Organic Substrate Grid Electrode and an Open-Source Recording System for UHF MRI: An Imaging Study. Chen YI; Ay I; Marturano F; Fuller P; Millan H; Bonmassar G Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204909 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive correlation between neuronal activity and spin-echo blood oxygenation level-dependent signals in the rat somatosensory cortex evoked by short electrical stimulations at various frequencies and currents. Kida I; Yamamoto T Brain Res; 2010 Mar; 1317():116-23. PubMed ID: 20059991 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Schulz K; Sydekum E; Krueppel R; Engelbrecht CJ; Schlegel F; Schröter A; Rudin M; Helmchen F Nat Methods; 2012 Jun; 9(6):597-602. PubMed ID: 22561989 [TBL] [Abstract][Full Text] [Related]
13. An open-source hardware and software system for acquisition and real-time processing of electrophysiology during high field MRI. Purdon PL; Millan H; Fuller PL; Bonmassar G J Neurosci Methods; 2008 Nov; 175(2):165-86. PubMed ID: 18761038 [TBL] [Abstract][Full Text] [Related]
14. What aspect of the fMRI BOLD signal best reflects the underlying electrophysiology in human somatosensory cortex? Arthurs OJ; Boniface SJ Clin Neurophysiol; 2003 Jul; 114(7):1203-9. PubMed ID: 12842716 [TBL] [Abstract][Full Text] [Related]
15. Ultra high-resolution fMRI and electrophysiology of the rat primary somatosensory cortex. Shih YY; Chen YY; Lai HY; Kao YC; Shyu BC; Duong TQ Neuroimage; 2013 Jun; 73():113-20. PubMed ID: 23384528 [TBL] [Abstract][Full Text] [Related]
16. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Qiang Y; Artoni P; Seo KJ; Culaclii S; Hogan V; Zhao X; Zhong Y; Han X; Wang PM; Lo YK; Li Y; Patel HA; Huang Y; Sambangi A; Chu JSV; Liu W; Fagiolini M; Fang H Sci Adv; 2018 Sep; 4(9):eaat0626. PubMed ID: 30191176 [TBL] [Abstract][Full Text] [Related]
17. Multimodal in vivo brain electrophysiology with integrated glass microelectrodes. Hunt DL; Lai C; Smith RD; Lee AK; Harris TD; Barbic M Nat Biomed Eng; 2019 Sep; 3(9):741-753. PubMed ID: 30936430 [TBL] [Abstract][Full Text] [Related]
18. Carbon monofilament electrodes for unit recording and functional MRI in same subjects. Chuapoco MR; Choy M; Schmid F; Duffy BA; Lee HJ; Lee JH Neuroimage; 2019 Feb; 186():806-816. PubMed ID: 30391560 [TBL] [Abstract][Full Text] [Related]
19. Magnetic field perturbation of neural recording and stimulating microelectrodes. Martinez-Santiesteban FM; Swanson SD; Noll DC; Anderson DJ Phys Med Biol; 2007 Apr; 52(8):2073-88. PubMed ID: 17404456 [TBL] [Abstract][Full Text] [Related]
20. Robust deep brain stimulation functional MRI procedures in rats and mice using an MR-compatible tungsten microwire electrode. Lai HY; Albaugh DL; Kao YC; Younce JR; Shih YY Magn Reson Med; 2015 Mar; 73(3):1246-51. PubMed ID: 24798216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]