BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 20811803)

  • 1. Productivity and selective accumulation of carotenoids of the novel extremophile microalga Chlamydomonas acidophila grown with different carbon sources in batch systems.
    Cuaresma M; Casal C; Forján E; Vílchez C
    J Ind Microbiol Biotechnol; 2011 Jan; 38(1):167-77. PubMed ID: 20811803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced productivity of a lutein-enriched novel acidophile microalga grown on urea.
    Casal C; Cuaresma M; Vega JM; Vilchez C
    Mar Drugs; 2010 Dec; 9(1):29-42. PubMed ID: 21339944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing lutein productivity of Chlamydomonas sp. via high-intensity light exposure with corresponding carotenogenic genes expression profiles.
    Ma R; Zhao X; Xie Y; Ho SH; Chen J
    Bioresour Technol; 2019 Mar; 275():416-420. PubMed ID: 30626542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced production of a lutein-rich acidic environment microalga.
    Vaquero I; Vázquez M; Ruiz-Domínguez MC; Vílchez C
    J Appl Microbiol; 2014 Apr; 116(4):839-50. PubMed ID: 24372827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IDENTIFICATION AND PHYSIOLOGICAL ASPECTS OF A NOVEL CAROTENOID-ENRICHED, METAL-RESISTANT MICROALGA ISOLATED FROM AN ACIDIC RIVER IN HUELVA (SPAIN)(1).
    Garbayo I; Torronteras R; Forján E; Cuaresma M; Casal C; Mogedas B; Ruiz-Domínguez MC; Márquez C; Vaquero I; Fuentes-Cordero JL; Fuentes R; González-Del-Valle M; Vílchez C
    J Phycol; 2012 Jun; 48(3):607-14. PubMed ID: 27011076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture.
    Shi XM; Jiang Y; Chen F
    Biotechnol Prog; 2002; 18(4):723-7. PubMed ID: 12153304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced High-Yield Production of Zeaxanthin, Lutein, and β-Carotene by a Mutant of Chlorella zofingiensis.
    Huang W; Lin Y; He M; Gong Y; Huang J
    J Agric Food Chem; 2018 Jan; 66(4):891-897. PubMed ID: 29319312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds.
    Blanco AM; Moreno J; Del Campo JA; Rivas J; Guerrero MG
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1259-66. PubMed ID: 17033775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carotenoids Production: A Healthy and Profitable Industry.
    Barreiro C; Barredo JL
    Methods Mol Biol; 2018; 1852():45-55. PubMed ID: 30109623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthetic Accumulation of Lutein in
    Xiao Y; He X; Ma Q; Lu Y; Bai F; Dai J; Wu Q
    Mar Drugs; 2018 Aug; 16(8):. PubMed ID: 30115823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The comparison of lutein production by Scenesdesmus sp. in the autotrophic and the mixotrophic cultivation.
    Yen HW; Sun CH; Ma TW
    Appl Biochem Biotechnol; 2011 Jun; 164(3):353-61. PubMed ID: 21132398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time- and media-dependent secondary carotenoid accumulation in Haematococcus pluvialis.
    Grewe C; Griehl C
    Biotechnol J; 2008 Oct; 3(9-10):1232-44. PubMed ID: 18683169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta).
    Del Campo JA; Rodríguez H; Moreno J; Vargas MA; Rivas J; Guerrero MG
    Appl Microbiol Biotechnol; 2004 Jun; 64(6):848-54. PubMed ID: 14689249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Engineering of Chlamydomonas reinhardtii for Enhanced β-Carotene and Lutein Production.
    Rathod JP; Vira C; Lali AM; Prakash G
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1457-1469. PubMed ID: 31782090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of a lycopene ε-cyclase gene of Chlorella (Chromochloris) zofingiensis. Regulation of the carotenogenic pathway by nitrogen and light.
    Cordero BF; Couso I; Leon R; Rodriguez H; Vargas MA
    Mar Drugs; 2012 Sep; 10(9):2069-2088. PubMed ID: 23118722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic manipulation of carotenoid biosynthesis and photoprotection.
    Pogson BJ; Rissler HM
    Philos Trans R Soc Lond B Biol Sci; 2000 Oct; 355(1402):1395-403. PubMed ID: 11127994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus: potential for lutein production.
    Flórez-Miranda L; Cañizares-Villanueva RO; Melchy-Antonio O; Martínez-Jerónimo F; Flores-Ortíz CM
    J Biotechnol; 2017 Nov; 262():67-74. PubMed ID: 28928028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lycopene and beta-carotene decompose more rapidly than lutein and zeaxanthin upon exposure to various pro-oxidants in vitro.
    Siems WG; Sommerburg O; van Kuijk FJ
    Biofactors; 1999; 10(2-3):105-13. PubMed ID: 10609870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of carotenoids by heat and tobacco smoke.
    Hurst JS; Contreras JE; Siems WG; Van Kuijk FJ
    Biofactors; 2004; 20(1):23-35. PubMed ID: 15096658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of selective delivery of xanthophylls to retinal pigment epithelial cells by human lipoproteins.
    Thomas SE; Harrison EH
    J Lipid Res; 2016 Oct; 57(10):1865-1878. PubMed ID: 27538825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.