These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 20811904)

  • 1. Control of neurotransmitter release: From Ca2+ to voltage dependent G-protein coupled receptors.
    Parnas I; Parnas H
    Pflugers Arch; 2010 Nov; 460(6):975-90. PubMed ID: 20811904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chemical synapse goes electric: Ca2+- and voltage-sensitive GPCRs control neurotransmitter release.
    Parnas H; Parnas I
    Trends Neurosci; 2007 Feb; 30(2):54-61. PubMed ID: 17169441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium released by photolysis of DM-nitrophen stimulates transmitter release at squid giant synapse.
    Delaney KR; Zucker RS
    J Physiol; 1990 Jul; 426():473-98. PubMed ID: 1977904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+-dependent mechanisms of presynaptic control at central synapses.
    Rusakov DA
    Neuroscientist; 2006 Aug; 12(4):317-26. PubMed ID: 16840708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action potentials must admit calcium to evoke transmitter release.
    Mulkey RM; Zucker RS
    Nature; 1991 Mar; 350(6314):153-5. PubMed ID: 1672444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divalent cations differentially support transmitter release at the squid giant synapse.
    Augustine GJ; Eckert R
    J Physiol; 1984 Jan; 346():257-71. PubMed ID: 6142104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotransmitter release at fast synapses.
    Parnas H; Parnas I
    J Membr Biol; 1994 Dec; 142(3):267-79. PubMed ID: 7707358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exhaustion of calcium does not terminate evoked neurotransmitter release.
    Parnas H; Segel LA
    J Theor Biol; 1984 Apr; 107(3):345-65. PubMed ID: 6145818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of transmitter release by action potential duration at the hippocampal CA3-CA1 synapse.
    Qian J; Saggau P
    J Neurophysiol; 1999 Jan; 81(1):288-98. PubMed ID: 9914289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium regulation of spontaneous and asynchronous neurotransmitter release.
    Smith SM; Chen W; Vyleta NP; Williams C; Lee CH; Phillips C; Andresen MC
    Cell Calcium; 2012; 52(3-4):226-33. PubMed ID: 22748761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous neurotransmitter release and Ca2+--how spontaneous is spontaneous neurotransmitter release?
    Glitsch MD
    Cell Calcium; 2008 Jan; 43(1):9-15. PubMed ID: 17382386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic ADP-ribose and calcium-induced calcium release regulate neurotransmitter release at a cholinergic synapse of Aplysia.
    Mothet JP; Fossier P; Meunier FM; Stinnakre J; Tauc L; Baux G
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):405-14. PubMed ID: 9518701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The timing of phasic transmitter release is Ca2+-dependent and lacks a direct influence of presynaptic membrane potential.
    Felmy F; Neher E; Schneggenburger R
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):15200-5. PubMed ID: 14630950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses.
    Uchitel OD; Protti DA; Sanchez V; Cherksey BD; Sugimori M; LlinĂ¡s R
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3330-3. PubMed ID: 1348859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurements of presynaptic calcium and calcium-activated potassium currents regulating neurotransmitter release at cultured Xenopus nerve-muscle synapses.
    Yazejian B; DiGregorio DA; Vergara JL; Poage RE; Meriney SD; Grinnell AD
    J Neurosci; 1997 May; 17(9):2990-3001. PubMed ID: 9096135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels.
    Robitaille R; Charlton MP
    J Neurosci; 1992 Jan; 12(1):297-305. PubMed ID: 1370323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca(2+) channels and transmitter release at the active zone.
    Schneggenburger R; Han Y; Kochubey O
    Cell Calcium; 2012; 52(3-4):199-207. PubMed ID: 22682961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmitter release and calcium currents at an Aplysia buccal ganglion synapse--II. Modulation by presynaptic receptors.
    Baux G; Fossier P; Trudeau LE; Tauc L
    Neuroscience; 1993 Mar; 53(2):581-93. PubMed ID: 8098518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.
    Kwon SK; Sando R; Lewis TL; Hirabayashi Y; Maximov A; Polleux F
    PLoS Biol; 2016 Jul; 14(7):e1002516. PubMed ID: 27429220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitatory and inhibitory transmitters modulate spontaneous transmitter release at cultured Aplysia sensorimotor synapses.
    Dale N; Kandel ER
    J Physiol; 1990 Feb; 421():203-22. PubMed ID: 1971854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.