BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 20811983)

  • 1. Identification of novel substrates of MAP Kinase cascades using bioengineered kinases that uniquely utilize analogs of ATP to phosphorylate substrates.
    Zheng H; Al-Ayoubi A; Eblen ST
    Methods Mol Biol; 2010; 661():167-83. PubMed ID: 20811983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying specific kinase substrates through engineered kinases and ATP analogs.
    Kumar NV; Eblen ST; Weber MJ
    Methods; 2004 Apr; 32(4):389-97. PubMed ID: 15003601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs.
    Eblen ST; Kumar NV; Shah K; Henderson MJ; Watts CK; Shokat KM; Weber MJ
    J Biol Chem; 2003 Apr; 278(17):14926-35. PubMed ID: 12594221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of two distinct regions of p38 MAPK required for substrate binding and phosphorylation.
    Gum RJ; Young PR
    Biochem Biophys Res Commun; 1999 Dec; 266(1):284-9. PubMed ID: 10581204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct phosphorylation of focal adhesion kinase by c-Src: evidence using a modified nucleotide pocket kinase and ATP analog.
    Chaudhary A; Brugge JS; Cooper JA
    Biochem Biophys Res Commun; 2002 Jun; 294(2):293-300. PubMed ID: 12051709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and implementation of three mitogen-activated protein kinase (MAPK) signaling pathway imaging assays to provide MAPK module selectivity profiling for kinase inhibitors: MK2-EGFP translocation, c-Jun, and ERK activation.
    Nickischer D; Laethem C; Trask OJ; Williams RG; Kandasamy R; Johnston PA; Johnston PA
    Methods Enzymol; 2006; 414():389-418. PubMed ID: 17110204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A "molecular evolution" approach for isolation of intrinsically active (MEK-independent) MAP kinases.
    Levin-Salomon V; Livnah O; Engelberg D
    Methods Mol Biol; 2010; 661():257-72. PubMed ID: 20811988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phage-display evolution of tyrosine kinases with altered nucleotide specificity.
    Ting AY; Witte K; Shah K; Kraybill B; Shokat KM; Schultz PG
    Biopolymers; 2001; 60(3):220-8. PubMed ID: 11774228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the putative MAP kinase docking site in the thyroid hormone receptor-beta1 DNA-binding domain: functional consequences of mutations at the docking site.
    Lin HY; Zhang S; West BL; Tang HY; Passaretti T; Davis FB; Davis PJ
    Biochemistry; 2003 Jun; 42(24):7571-9. PubMed ID: 12809513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a "methionine clamp" into Src family kinases enhances specificity toward unnatural ATP analogues.
    Ulrich SM; Kenski DM; Shokat KM
    Biochemistry; 2003 Jul; 42(26):7915-21. PubMed ID: 12834343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Src family protein kinases with unnatural nucleotide specificity.
    Liu Y; Shah K; Yang F; Witucki L; Shokat KM
    Chem Biol; 1998 Feb; 5(2):91-101. PubMed ID: 9495830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the serine/threonine protein kinase Raf-1 to utilise an orthogonal analogue of ATP substituted at the N6 position.
    Hindley AD; Park S; Wang L; Shah K; Wang Y; Hu X; Shokat KM; Kolch W; Sedivy JM; Yeung KC
    FEBS Lett; 2004 Jan; 556(1-3):26-34. PubMed ID: 14706820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation.
    Hutter D; Chen P; Barnes J; Liu Y
    Biochem J; 2000 Nov; 352 Pt 1(Pt 1):155-63. PubMed ID: 11062068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transcription factor ATF-2 inhibits extracellular signal regulated kinase expression and proliferation of human cancer cells.
    Crowe DL; Shemirani B
    Anticancer Res; 2000; 20(5A):2945-9. PubMed ID: 11062705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues.
    Wang J; Ding H; Zhang A; Ma F; Cao J; Jiang M
    J Integr Plant Biol; 2010 May; 52(5):442-52. PubMed ID: 20537040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass spectrometry-based identification of protein kinase substrates utilizing engineered kinases and thiophosphate labeling.
    Chi Y; Clurman BE
    Curr Protoc Chem Biol; 2010 Dec; 2(4):219-34. PubMed ID: 23839977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and characterization of a traceable protein kinase Calpha.
    Abeyweera TP; Rotenberg SA
    Biochemistry; 2007 Mar; 46(9):2364-70. PubMed ID: 17279776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitor scaffolds as new allele specific kinase substrates.
    Kraybill BC; Elkin LL; Blethrow JD; Morgan DO; Shokat KM
    J Am Chem Soc; 2002 Oct; 124(41):12118-28. PubMed ID: 12371851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ATP analog-sensitive version of the tomato cell death suppressor protein kinase Adi3 for use in substrate identification.
    Dittrich AC; Devarenne TP
    Biochim Biophys Acta; 2012 Feb; 1824(2):269-73. PubMed ID: 22027266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3.
    Carlson SM; Chouinard CR; Labadorf A; Lam CJ; Schmelzle K; Fraenkel E; White FM
    Sci Signal; 2011 Oct; 4(196):rs11. PubMed ID: 22028470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.