These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 20811989)

  • 1. Reconstitution of the nuclear transport of the MAP kinase ERK2.
    Jivan A; Ranganathan A; Cobb MH
    Methods Mol Biol; 2010; 661():273-85. PubMed ID: 20811989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ERK2 enters the nucleus by a carrier-independent mechanism.
    Whitehurst AW; Wilsbacher JL; You Y; Luby-Phelps K; Moore MS; Cobb MH
    Proc Natl Acad Sci U S A; 2002 May; 99(11):7496-501. PubMed ID: 12032311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The death effector domain protein PEA-15 prevents nuclear entry of ERK2 by inhibiting required interactions.
    Whitehurst AW; Robinson FL; Moore MS; Cobb MH
    J Biol Chem; 2004 Mar; 279(13):12840-7. PubMed ID: 14707138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crosstalk between ERK2 and RXR regulates nuclear import of transcription factor NGFI-B.
    Jacobs CM; Paulsen RE
    Biochem Biophys Res Commun; 2005 Oct; 336(2):646-52. PubMed ID: 16140267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEK1 and MEK2 regulate distinct functions by sorting ERK2 to different intracellular compartments.
    Skarpen E; Flinder LI; Rosseland CM; Orstavik S; Wierød L; Oksvold MP; Skålhegg BS; Huitfeldt HS
    FASEB J; 2008 Feb; 22(2):466-76. PubMed ID: 17928366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in ERK2 binding sites affect nuclear entry.
    Yazicioglu MN; Goad DL; Ranganathan A; Whitehurst AW; Goldsmith EJ; Cobb MH
    J Biol Chem; 2007 Sep; 282(39):28759-28767. PubMed ID: 17656361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nuclear localization of ERK2 occurs by mechanisms both independent of and dependent on energy.
    Ranganathan A; Yazicioglu MN; Cobb MH
    J Biol Chem; 2006 Jun; 281(23):15645-52. PubMed ID: 16595679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leukocyte-specific protein 1 targets the ERK/MAP kinase scaffold protein KSR and MEK1 and ERK2 to the actin cytoskeleton.
    Harrison RE; Sikorski BA; Jongstra J
    J Cell Sci; 2004 Apr; 117(Pt 10):2151-7. PubMed ID: 15090600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics and variability of ERK2 response to EGF in individual living cells.
    Cohen-Saidon C; Cohen AA; Sigal A; Liron Y; Alon U
    Mol Cell; 2009 Dec; 36(5):885-93. PubMed ID: 20005850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SNT-2 interacts with ERK2 and negatively regulates ERK2 signaling in response to EGF stimulation.
    Huang L; Gotoh N; Zhang S; Shibuya M; Yamamoto T; Tsuchida N
    Biochem Biophys Res Commun; 2004 Nov; 324(3):1011-7. PubMed ID: 15485655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization and trafficking of fluorescently tagged ERK1 and ERK2.
    Marchi M; Parra R; Costa M; Ratto GM
    Methods Mol Biol; 2010; 661():287-301. PubMed ID: 20811990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct nuclear import and export pathways mediated by members of the karyopherin beta family.
    Moroianu J
    J Cell Biochem; 1998 Aug; 70(2):231-9. PubMed ID: 9671229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic regulation of ERK2 nuclear translocation and mobility in living cells.
    Costa M; Marchi M; Cardarelli F; Roy A; Beltram F; Maffei L; Ratto GM
    J Cell Sci; 2006 Dec; 119(Pt 23):4952-63. PubMed ID: 17105770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer.
    Adachi M; Fukuda M; Nishida E
    EMBO J; 1999 Oct; 18(19):5347-58. PubMed ID: 10508167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK.
    Kucharska A; Rushworth LK; Staples C; Morrice NA; Keyse SM
    Cell Signal; 2009 Dec; 21(12):1794-805. PubMed ID: 19666109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocytosis controls glutamate-induced nuclear accumulation of ERK.
    Trifilieff P; Lavaur J; Pascoli V; Kappès V; Brami-Cherrier K; Pagès C; Micheau J; Caboche J; Vanhoutte P
    Mol Cell Neurosci; 2009 Jul; 41(3):325-36. PubMed ID: 19398002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of a general nuclear translocation signal in signaling proteins.
    Chuderland D; Konson A; Seger R
    Mol Cell; 2008 Sep; 31(6):850-61. PubMed ID: 18760948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a C-terminal region that is required for the nuclear translocation of ERK2 by passive diffusion.
    Shibayama S; Shibata-Seita R; Miura K; Kirino Y; Takishima K
    J Biol Chem; 2002 Oct; 277(40):37777-82. PubMed ID: 12149268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional interaction of the Ras effector RASSF5 with the tyrosine kinase Lck: critical role in nucleocytoplasmic transport and cell cycle regulation.
    Kumari G; Singhal PK; Suryaraja R; Mahalingam S
    J Mol Biol; 2010 Mar; 397(1):89-109. PubMed ID: 20064523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model system to study classical nuclear export signals.
    Kanwal C; Li H; Lim CS
    AAPS PharmSci; 2002; 4(3):E18. PubMed ID: 12423067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.