BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 20812327)

  • 1. Solvent-induced lid opening in lipases: a molecular dynamics study.
    Rehm S; Trodler P; Pleiss J
    Protein Sci; 2010 Nov; 19(11):2122-30. PubMed ID: 20812327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase.
    Trodler P; Schmid RD; Pleiss J
    BMC Struct Biol; 2009 May; 9():38. PubMed ID: 19476626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toluene promotes lid 2 interfacial activation of cold active solvent tolerant lipase from Pseudomonas fluorescens strain AMS8.
    Yaacob N; Mohamad Ali MS; Salleh AB; Rahman RNZRA; Leow ATC
    J Mol Graph Model; 2016 Jul; 68():224-235. PubMed ID: 27474867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics of Candida rugosa lipase: the role of organic solvent.
    Tejo BA; Salleh AB; Pleiss J
    J Mol Model; 2004 Dec; 10(5-6):358-66. PubMed ID: 15597204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa.
    Norin M; Haeffner F; Achour A; Norin T; Hult K
    Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of Candida rugosa lipase at alkane-aqueous interfaces: a molecular dynamics study.
    James JJ; Lakshmi BS; Seshasayee AS; Gautam P
    FEBS Lett; 2007 Sep; 581(23):4377-83. PubMed ID: 17765226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel self-activation mechanism of Candida antarctica lipase B.
    Luan B; Zhou R
    Phys Chem Chem Phys; 2017 Jun; 19(24):15709-15714. PubMed ID: 28589990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the conformational states and rearrangements of Yarrowia lipolytica Lipase.
    Bordes F; Barbe S; Escalier P; Mourey L; André I; Marty A; Tranier S
    Biophys J; 2010 Oct; 99(7):2225-34. PubMed ID: 20923657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Conformational Transitions and Dynamics of
    Liang K; Dong W; Gao J; Liu Z; Zhou R; Shu Z; Duan M
    J Chem Inf Model; 2023 Jun; 63(12):3854-3864. PubMed ID: 37307245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The atypical lipase B from Candida antarctica is better adapted for organic media than the typical lipase from Thermomyces lanuginosa.
    Salis A; Svensson I; Monduzzi M; Solinas V; Adlercreutz P
    Biochim Biophys Acta; 2003 Mar; 1646(1-2):145-51. PubMed ID: 12637021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lid dynamics of porcine pancreatic lipase in non-aqueous solvents.
    Haque N; Prabhu NP
    Biochim Biophys Acta; 2016 Oct; 1860(10):2326-34. PubMed ID: 27155580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor.
    Kim KK; Song HK; Shin DH; Hwang KY; Suh SW
    Structure; 1997 Feb; 5(2):173-85. PubMed ID: 9032073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipase-catalysed hydrolysis of short-chain substrates in solution and in emulsion: a kinetic study.
    Nini L; Sarda L; Comeau LC; Boitard E; Dubès JP; Chahinian H
    Biochim Biophys Acta; 2001 Nov; 1534(1):34-44. PubMed ID: 11750885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-Aqueous Organic System: A Neglected Model in Computational Lipase Design?
    Wang S; Xu Y; Yu XW
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34200257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled lid-opening in Thermomyces lanuginosus lipase- An engineered switch for studying lipase function.
    Skjold-Jørgensen J; Vind J; Moroz OV; Blagova E; Bhatia VK; Svendsen A; Wilson KS; Bjerrum MJ
    Biochim Biophys Acta Proteins Proteom; 2017 Jan; 1865(1):20-27. PubMed ID: 27693248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of Thermomyces lanuginosa lipase in the presence of tributyrylglycerol and water.
    Santini S; Crowet JM; Thomas A; Paquot M; Vandenbol M; Thonart P; Wathelet JP; Blecker C; Lognay G; Brasseur R; Lins L; Charloteaux B
    Biophys J; 2009 Jun; 96(12):4814-25. PubMed ID: 19527641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase.
    Peters GH; Olsen OH; Svendsen A; Wade RC
    Biophys J; 1996 Jul; 71(1):119-29. PubMed ID: 8804595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into interfacial activation from an open structure of Candida rugosa lipase.
    Grochulski P; Li Y; Schrag JD; Bouthillier F; Smith P; Harrison D; Rubin B; Cygler M
    J Biol Chem; 1993 Jun; 268(17):12843-7. PubMed ID: 8509417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Conformational Changes and Interfacial Recognition Site of Lipases With Surfactants and Inhibitors.
    Mateos-Diaz E; Amara S; Roussel A; Longhi S; Cambillau C; Carrière F
    Methods Enzymol; 2017; 583():279-307. PubMed ID: 28063495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial activation of M37 lipase: A multi-scale simulation study.
    Willems N; Lelimousin M; Koldsø H; Sansom MS
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):340-349. PubMed ID: 27993564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.