BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 20812327)

  • 41. Dynamics of proteins in different solvent systems: analysis of essential motion in lipases.
    Peters GH; van Aalten DM; Edholm O; Toxvaerd S; Bywater R
    Biophys J; 1996 Nov; 71(5):2245-55. PubMed ID: 8913568
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular modeling of lipase binding to a substrate-water interface.
    Gruber CC; Pleiss J
    Methods Mol Biol; 2012; 861():313-27. PubMed ID: 22426727
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elucidation of lid open and orientation of lipase activated in interfacial activation by amphiphilic environment.
    Cheng C; Jiang T; Wu Y; Cui L; Qin S; He B
    Int J Biol Macromol; 2018 Nov; 119():1211-1217. PubMed ID: 30071229
    [TBL] [Abstract][Full Text] [Related]  

  • 44. X-ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation.
    Ericsson DJ; Kasrayan A; Johansson P; Bergfors T; Sandström AG; Bäckvall JE; Mowbray SL
    J Mol Biol; 2008 Feb; 376(1):109-19. PubMed ID: 18155238
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of a lipid interface on protein dynamics in a fungal lipase.
    Peters GH; Bywater RP
    Biophys J; 2001 Dec; 81(6):3052-65. PubMed ID: 11720974
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fluorescence spectroscopic characterization of Humicola lanuginosa lipase dissolved in its substrate.
    Jutila A; Zhu K; Tuominen EK; Kinnunen PK
    Biochim Biophys Acta; 2004 Nov; 1702(2):181-9. PubMed ID: 15488770
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lipases from Rhizomucor miehei and Humicola lanuginosa: modification of the lid covering the active site alters enantioselectivity.
    Holmquist M; Martinelle M; Berglund P; Clausen IG; Patkar S; Svendsen A; Hult K
    J Protein Chem; 1993 Dec; 12(6):749-57. PubMed ID: 8136025
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theoretical studies of Rhizomucor miehei lipase activation.
    Norin M; Olsen O; Svendsen A; Edholm O; Hult K
    Protein Eng; 1993 Nov; 6(8):855-63. PubMed ID: 8309933
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B Lipases. I. Interfacial activation and substrate (ethanol, oleic acid) adsorption.
    Foresti ML; Ferreira ML
    Biomacromolecules; 2004; 5(6):2366-75. PubMed ID: 15530053
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A mixed molecular modeling-robotics approach to investigate lipase large molecular motions.
    Barbe S; Cortés J; Siméon T; Monsan P; Remaud-Siméon M; André I
    Proteins; 2011 Aug; 79(8):2517-29. PubMed ID: 21656568
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unlocking the mystery behind the activation phenomenon of T1 lipase: a molecular dynamics simulations approach.
    Abdul Rahman MZ; Salleh AB; Abdul Rahman RN; Abdul Rahman MB; Basri M; Leow TC
    Protein Sci; 2012 Aug; 21(8):1210-21. PubMed ID: 22692819
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Investigating the structural properties of the active conformation BTL2 of a lipase from Geobacillus thermocatenulatus in toluene using molecular dynamic simulations and engineering BTL2 via in-silico mutation.
    Yenenler A; Venturini A; Burduroglu HC; Sezerman OU
    J Mol Model; 2018 Aug; 24(9):229. PubMed ID: 30097767
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational analysis of chain flexibility and fluctuations in Rhizomucor miehei lipase.
    Peters GH; Bywater RP
    Protein Eng; 1999 Sep; 12(9):747-54. PubMed ID: 10506284
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Structure and Activity of Fungal Lipases in Bile Salt Solutions].
    Bogdanova LR; Bakirova DR; Valiullina YA; Idiyatullin BZ; Faizullin DA; Zueva OS; Zuev YF
    Biofizika; 2016; 61(2):247-54. PubMed ID: 27192825
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Altering the activation mechanism in Thermomyces lanuginosus lipase.
    Skjold-Jørgensen J; Vind J; Svendsen A; Bjerrum MJ
    Biochemistry; 2014 Jul; 53(25):4152-60. PubMed ID: 24870718
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular mechanism of deactivation of C. antarctica lipase B by methanol.
    Kulschewski T; Sasso F; Secundo F; Lotti M; Pleiss J
    J Biotechnol; 2013 Dec; 168(4):462-9. PubMed ID: 24144811
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The closed/open model for lipase activation. Addressing intermediate active forms of fungal enzymes by trapping of conformers in water-restricted environments.
    González-Navarro H; Bañó MC; Abad C
    Biochemistry; 2001 Mar; 40(10):3174-83. PubMed ID: 11258933
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of water activity and immobilization on fatty acid selectivity for esterification reactions mediated by lipases.
    Lee CH; Parkin KL
    Biotechnol Bioeng; 2001 Oct; 75(2):219-27. PubMed ID: 11536145
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Substrate conformations set the rate of enzymatic acrylation by lipases.
    Syrén PO; Hult K
    Chembiochem; 2010 Apr; 11(6):802-10. PubMed ID: 20301160
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The open conformation of a Pseudomonas lipase.
    Schrag JD; Li Y; Cygler M; Lang D; Burgdorf T; Hecht HJ; Schmid R; Schomburg D; Rydel TJ; Oliver JD; Strickland LC; Dunaway CM; Larson SB; Day J; McPherson A
    Structure; 1997 Feb; 5(2):187-202. PubMed ID: 9032074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.