BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 20812327)

  • 61. Structural Basis by Which the N-Terminal Polypeptide Segment of
    Zhang M; Yu XW; Xu Y; Guo RT; Swapna GVT; Szyperski T; Hunt JF; Montelione GT
    Biochemistry; 2019 Sep; 58(38):3943-3954. PubMed ID: 31436959
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The open conformation of a Pseudomonas lipase.
    Schrag JD; Li Y; Cygler M; Lang D; Burgdorf T; Hecht HJ; Schmid R; Schomburg D; Rydel TJ; Oliver JD; Strickland LC; Dunaway CM; Larson SB; Day J; McPherson A
    Structure; 1997 Feb; 5(2):187-202. PubMed ID: 9032074
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent.
    Park HJ; Joo JC; Park K; Kim YH; Yoo YJ
    J Biotechnol; 2013 Feb; 163(3):346-52. PubMed ID: 23178554
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex.
    Brzozowski AM; Derewenda U; Derewenda ZS; Dodson GG; Lawson DM; Turkenburg JP; Bjorkling F; Huge-Jensen B; Patkar SA; Thim L
    Nature; 1991 Jun; 351(6326):491-4. PubMed ID: 2046751
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spectroscopic and catalytic studies of lipases in ternary hexane-1-propanol-water surfactantless microemulsion systems.
    Zoumpanioti M; Stamatis H; Papadimitriou V; Xenakis A
    Colloids Surf B Biointerfaces; 2006 Jan; 47(1):1-9. PubMed ID: 16364610
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Less explored plant lipases: Modeling and molecular dynamics simulations of plant lipases in different solvents and temperatures to understand structure-function relationship.
    Sankar S; Ponnuraj K
    Int J Biol Macromol; 2020 Dec; 164():3546-3558. PubMed ID: 32888994
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A pancreatic lipase with a phospholipase A1 activity: crystal structure of a chimeric pancreatic lipase-related protein 2 from guinea pig.
    Withers-Martinez C; Carrière F; Verger R; Bourgeois D; Cambillau C
    Structure; 1996 Nov; 4(11):1363-74. PubMed ID: 8939760
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Conversion of a Rhizopus chinensis lipase into an esterase by lid swapping.
    Yu XW; Zhu SS; Xiao R; Xu Y
    J Lipid Res; 2014 Jun; 55(6):1044-51. PubMed ID: 24670990
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Two conformational states of Candida rugosa lipase.
    Grochulski P; Li Y; Schrag JD; Cygler M
    Protein Sci; 1994 Jan; 3(1):82-91. PubMed ID: 8142901
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Esterification of phenolic acids catalyzed by lipases immobilized in organogels.
    Zoumpanioti M; Merianou E; Karandreas T; Stamatis H; Xenakis A
    Biotechnol Lett; 2010 Oct; 32(10):1457-62. PubMed ID: 20490615
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structure of product-bound SMG1 lipase: active site gating implications.
    Guo S; Xu J; Pavlidis IV; Lan D; Bornscheuer UT; Liu J; Wang Y
    FEBS J; 2015 Dec; 282(23):4538-47. PubMed ID: 26365206
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Computational studies of essential dynamics of Pseudomonas cepacia lipase.
    Lee J; Suh SW; Shin S
    J Biomol Struct Dyn; 2000 Oct; 18(2):297-309. PubMed ID: 11089650
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modification and simulation of Rhizomucor miehei lipase: the influence of surficial electrostatic interaction on enantioselectivity.
    Xu G; Meng X; Xu LJ; Guo L; Wu JP; Yang LR
    Biotechnol Lett; 2015 Apr; 37(4):871-80. PubMed ID: 25650338
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of Lid 1 Mutagenesis on Lid Displacement, Catalytic Performances and Thermostability of Cold-active Pseudomonas AMS8 Lipase in Toluene.
    Yaacob N; Ahmad Kamarudin NH; Leow ATC; Salleh AB; Rahman RNZRA; Ali MSM
    Comput Struct Biotechnol J; 2019; 17():215-228. PubMed ID: 30828413
    [No Abstract]   [Full Text] [Related]  

  • 75. Selective disruption of disulphide bonds lowered activation energy and improved catalytic efficiency in TALipB from Trichosporon asahii MSR54: MD simulations revealed flexible lid and extended substrate binding area in the mutant.
    Singh Y; Gupta N; Verma VV; Goel M; Gupta R
    Biochem Biophys Res Commun; 2016 Mar; 472(1):223-30. PubMed ID: 26930469
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Lipase-catalyzed kinetic resolution of (±)-1-(2-furyl) ethanol in nonaqueous media.
    Devendran S; Yadav GD
    Chirality; 2014 Jun; 26(6):286-92. PubMed ID: 24733779
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Self-Assembly Nanostructures of Triglyceride-Water Interfaces Determine Functional Conformations of Candida antarctica Lipase B.
    Benson SP; Pleiss J
    Langmuir; 2017 Mar; 33(12):3151-3159. PubMed ID: 28274117
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Immobilization of lipase on carboxylic acid-modified silica nanoparticles for olive oil glycerolysis.
    Singh AK; Mukhopadhyay M
    Bioprocess Biosyst Eng; 2018 Jan; 41(1):115-127. PubMed ID: 29043450
    [TBL] [Abstract][Full Text] [Related]  

  • 79. General trend of lipase to self-assemble giving bimolecular aggregates greatly modifies the enzyme functionality.
    Palomo JM; Fuentes M; Fernández-Lorente G; Mateo C; Guisan JM; Fernández-Lafuente R
    Biomacromolecules; 2003; 4(1):1-6. PubMed ID: 12523838
    [TBL] [Abstract][Full Text] [Related]  

  • 80. 3-D structure modelling of the Staphylococcus simulans lipase: conformational changes, substrate specificity and novel structural features.
    Frikha F; Ladjimi M; Gargouri Y; Miled N
    FEMS Microbiol Lett; 2008 Sep; 286(2):207-21. PubMed ID: 18662315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.