These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 20812327)

  • 81. Binding of Solvent Molecules to a Protein Surface in Binary Mixtures Follows a Competitive Langmuir Model.
    Kulschewski T; Pleiss J
    Langmuir; 2016 Sep; 32(35):8960-8. PubMed ID: 27523916
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Monoglycerides and diglycerides synthesis in a solvent-free system by lipase-catalyzed glycerolysis.
    Fregolente PB; Fregolente LV; Pinto GM; Batistella BC; Wolf-Maciel MR; Filho RM
    Appl Biochem Biotechnol; 2008 Mar; 146(1-3):165-72. PubMed ID: 18421596
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Understanding domain movements and interactions of Pseudomonas aeruginosa lipase with lipid molecule tristearoyl glycerol: A molecular dynamics approach.
    Thiruvengadam K; Baskaran SK; Pennathur G
    J Mol Graph Model; 2018 Oct; 85():190-197. PubMed ID: 30227364
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties.
    Khan FI; Lan D; Durrani R; Huan W; Zhao Z; Wang Y
    Front Bioeng Biotechnol; 2017; 5():16. PubMed ID: 28337436
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Solid-phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases.
    Palomo JM; Peñas MM; Fernández-Lorente G; Mateo C; Pisabarro AG; Fernández-Lafuente R; Ramírez L; Guisán JM
    Biomacromolecules; 2003; 4(2):204-10. PubMed ID: 12625713
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Template-based modeling of a psychrophilic lipase: conformational changes, novel structural features and its application in predicting the enantioselectivity of lipase catalyzed transesterification of secondary alcohols.
    Xu T; Gao B; Zhang L; Lin J; Wang X; Wei D
    Biochim Biophys Acta; 2010 Dec; 1804(12):2183-90. PubMed ID: 20828637
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Structure and conformational flexibility of Candida rugosa lipase.
    Cygler M; Schrag JD
    Biochim Biophys Acta; 1999 Nov; 1441(2-3):205-14. PubMed ID: 10570248
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Structural and evolutionary relationships in lipase mechanism and activation.
    Dodson GG; Lawson DM; Winkler FK
    Faraday Discuss; 1992; (93):95-105. PubMed ID: 1290943
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Discrimination between closed and open forms of lipases using electrophoretic techniques.
    Miled N; Riviere M; Cavalier JF; Buono G; Berti L; Verger R
    Anal Biochem; 2005 Mar; 338(2):171-8. PubMed ID: 15745736
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Digestive lipases: from three-dimensional structure to physiology.
    Miled N; Canaan S; Dupuis L; Roussel A; Rivière M; Carrière F; de Caro A; Cambillau C; Verger R
    Biochimie; 2000 Nov; 82(11):973-86. PubMed ID: 11099794
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Structure of human pancreatic lipase-related protein 2 with the lid in an open conformation.
    Eydoux C; Spinelli S; Davis TL; Walker JR; Seitova A; Dhe-Paganon S; De Caro A; Cambillau C; Carrière F
    Biochemistry; 2008 Sep; 47(36):9553-64. PubMed ID: 18702514
    [TBL] [Abstract][Full Text] [Related]  

  • 92. On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase.
    Martinelle M; Holmquist M; Hult K
    Biochim Biophys Acta; 1995 Oct; 1258(3):272-6. PubMed ID: 7548197
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The open lid mediates pancreatic lipase function.
    Yang Y; Lowe ME
    J Lipid Res; 2000 Jan; 41(1):48-57. PubMed ID: 10627501
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Immobilization of Candida antarctica A and Thermomyces lanuginosus lipases on cotton terry cloth fibrils using polyethyleneimine.
    Ondul E; Dizge N; Albayrak N
    Colloids Surf B Biointerfaces; 2012 Jun; 95():109-14. PubMed ID: 22421414
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Combined utilization of lipase-displaying Pichia pastoris whole-cell biocatalysts to improve biodiesel production in co-solvent media.
    Jin Z; Han SY; Zhang L; Zheng SP; Wang Y; Lin Y
    Bioresour Technol; 2013 Feb; 130():102-9. PubMed ID: 23306117
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Orientation and conformation of a lipase at an interface studied by molecular dynamics simulations.
    Jensen MØ; Jensen TR; Kjaer K; Bjørnholm T; Mouritsen OG; Peters GH
    Biophys J; 2002 Jul; 83(1):98-111. PubMed ID: 12080103
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Amplitude of pancreatic lipase lid opening in solution and identification of spin label conformational subensembles by combining continuous wave and pulsed EPR spectroscopy and molecular dynamics.
    Ranaldi S; Belle V; Woudstra M; Bourgeas R; Guigliarelli B; Roche P; Vezin H; Carrière F; Fournel A
    Biochemistry; 2010 Mar; 49(10):2140-9. PubMed ID: 20136147
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Solvent-dependent gating motions of an extremophilic lipase from Pseudomonas aeruginosa.
    Johnson QR; Nellas RB; Shen T
    Biochemistry; 2012 Aug; 51(31):6238-45. PubMed ID: 22830585
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Lipases from different sources vary widely in dependence of catalytic activity on water activity.
    Valivety RH; Halling PJ; Peilow AD; Macrae AR
    Biochim Biophys Acta; 1992 Jul; 1122(2):143-6. PubMed ID: 1643087
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Mechanism of acetaldehyde-induced deactivation of microbial lipases.
    Franken B; Eggert T; Jaeger KE; Pohl M
    BMC Biochem; 2011 Feb; 12():10. PubMed ID: 21342514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.