These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 20812742)
1. Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes. Sinitskii A; Dimiev A; Kosynkin DV; Tour JM ACS Nano; 2010 Sep; 4(9):5405-13. PubMed ID: 20812742 [TBL] [Abstract][Full Text] [Related]
2. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons. Terrones M ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. Sinitskii A; Dimiev A; Corley DA; Fursina AA; Kosynkin DV; Tour JM ACS Nano; 2010 Apr; 4(4):1949-54. PubMed ID: 20345149 [TBL] [Abstract][Full Text] [Related]
4. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Li X; Wang X; Zhang L; Lee S; Dai H Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865 [TBL] [Abstract][Full Text] [Related]
5. Recent progress and challenges in graphene nanoribbon synthesis. Ma L; Wang J; Ding F Chemphyschem; 2013 Jan; 14(1):47-54. PubMed ID: 22615215 [TBL] [Abstract][Full Text] [Related]
6. Graphene nanoribbon composites. Rafiee MA; Lu W; Thomas AV; Zandiatashbar A; Rafiee J; Tour JM; Koratkar NA ACS Nano; 2010 Dec; 4(12):7415-20. PubMed ID: 21080652 [TBL] [Abstract][Full Text] [Related]
7. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078 [TBL] [Abstract][Full Text] [Related]
8. Selective etching of graphene edges by hydrogen plasma. Xie L; Jiao L; Dai H J Am Chem Soc; 2010 Oct; 132(42):14751-3. PubMed ID: 20923144 [TBL] [Abstract][Full Text] [Related]
9. Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors. Lin MW; Ling C; Zhang Y; Yoon HJ; Cheng MM; Agapito LA; Kioussis N; Widjaja N; Zhou Z Nanotechnology; 2011 Jul; 22(26):265201. PubMed ID: 21576804 [TBL] [Abstract][Full Text] [Related]
10. Intact Crystalline Semiconducting Graphene Nanoribbons from Unzipping Nitrogen-Doped Carbon Nanotubes. Lee HJ; Lim J; Cho SY; Kim H; Lee C; Lee GY; Sasikala SP; Yun T; Choi DS; Jeong MS; Jung HT; Hong S; Kim SO ACS Appl Mater Interfaces; 2019 Oct; 11(41):38006-38015. PubMed ID: 31544452 [TBL] [Abstract][Full Text] [Related]
11. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. Abbas AN; Liu G; Liu B; Zhang L; Liu H; Ohlberg D; Wu W; Zhou C ACS Nano; 2014 Feb; 8(2):1538-46. PubMed ID: 24467172 [TBL] [Abstract][Full Text] [Related]
12. Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes. Kim K; Sussman A; Zettl A ACS Nano; 2010 Mar; 4(3):1362-6. PubMed ID: 20131856 [TBL] [Abstract][Full Text] [Related]
13. Revisiting the Mechanism of Oxidative Unzipping of Multiwall Carbon Nanotubes to Graphene Nanoribbons. Dimiev AM; Khannanov A; Vakhitov I; Kiiamov A; Shukhina K; Tour JM ACS Nano; 2018 Apr; 12(4):3985-3993. PubMed ID: 29578700 [TBL] [Abstract][Full Text] [Related]
15. Photoluminescent Semiconducting Graphene Nanoribbons via Longitudinally Unzipping Single-Walled Carbon Nanotubes. Li H; Zhang J; Gholizadeh AB; Brownless J; Fu Y; Cai W; Han Y; Duan T; Wang Y; Ling H; Leifer K; Curry R; Song A ACS Appl Mater Interfaces; 2021 Nov; 13(44):52892-52900. PubMed ID: 34719923 [TBL] [Abstract][Full Text] [Related]
16. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage. Puster M; Rodríguez-Manzo JA; Balan A; Drndić M ACS Nano; 2013 Dec; 7(12):11283-9. PubMed ID: 24224888 [TBL] [Abstract][Full Text] [Related]
17. Wrinkle engineering: a new approach to massive graphene nanoribbon arrays. Pan Z; Liu N; Fu L; Liu Z J Am Chem Soc; 2011 Nov; 133(44):17578-81. PubMed ID: 21981554 [TBL] [Abstract][Full Text] [Related]
18. Controlled Preparation and Device Application of Sub-5 nm Graphene Nanoribbons and Graphene Nanoribbon/Carbon Nanotube Intramolecular Heterostructures. He Z; Wang K; Yan C; Wan L; Zhou Q; Zhang T; Ye X; Zhang Y; Shi F; Jiang S; Zhao J; Wang K; Chen C ACS Appl Mater Interfaces; 2023 Feb; 15(5):7148-7156. PubMed ID: 36692227 [TBL] [Abstract][Full Text] [Related]
19. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Kim WY; Kim KS Nat Nanotechnol; 2008 Jul; 3(7):408-12. PubMed ID: 18654564 [TBL] [Abstract][Full Text] [Related]
20. Formation of nitrogen-doped graphene nanoribbons via chemical unzipping. Cruz-Silva R; Morelos-Gómez A; Vega-Díaz S; Tristán-López F; Elias AL; Perea-López N; Muramatsu H; Hayashi T; Fujisawa K; Kim YA; Endo M; Terrones M ACS Nano; 2013 Mar; 7(3):2192-204. PubMed ID: 23421313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]