These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
491 related articles for article (PubMed ID: 20813066)
1. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: a case study in endemic districts of Bhutan. Wangdi K; Singhasivanon P; Silawan T; Lawpoolsri S; White NJ; Kaewkungwal J Malar J; 2010 Sep; 9():251. PubMed ID: 20813066 [TBL] [Abstract][Full Text] [Related]
2. Models for short term malaria prediction in Sri Lanka. Briët OJ; Vounatsou P; Gunawardena DM; Galappaththy GN; Amerasinghe PH Malar J; 2008 May; 7():76. PubMed ID: 18460204 [TBL] [Abstract][Full Text] [Related]
3. Model variations in predicting incidence of Plasmodium falciparum malaria using 1998-2007 morbidity and meteorological data from south Ethiopia. Loha E; Lindtjørn B Malar J; 2010 Jun; 9():166. PubMed ID: 20553590 [TBL] [Abstract][Full Text] [Related]
4. Early Warning and Prediction of Scarlet Fever in China Using the Baidu Search Index and Autoregressive Integrated Moving Average With Explanatory Variable (ARIMAX) Model: Time Series Analysis. Luo T; Zhou J; Yang J; Xie Y; Wei Y; Mai H; Lu D; Yang Y; Cui P; Ye L; Liang H; Huang J J Med Internet Res; 2023 Oct; 25():e49400. PubMed ID: 37902815 [TBL] [Abstract][Full Text] [Related]
5. [Application of ARIMA model to predict number of malaria cases in China]. Hui-Yu H; Hua-Qin S; Shun-Xian Z; Lin AI; Yan LU; Yu-Chun C; Shi-Zhu LI; Xue-Jiao T; Chun-Li Y; Wei HU; Jia-Xu C Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2017 Aug; 29(4):436-440. PubMed ID: 29508575 [TBL] [Abstract][Full Text] [Related]
6. Forecasting incidence of hand, foot and mouth disease using BP neural networks in Jiangsu province, China. Liu W; Bao C; Zhou Y; Ji H; Wu Y; Shi Y; Shen W; Bao J; Li J; Hu J; Huo X BMC Infect Dis; 2019 Oct; 19(1):828. PubMed ID: 31590636 [TBL] [Abstract][Full Text] [Related]
7. Exploring malaria prediction models in Togo: a time series forecasting by health district and target group. Thomas A; Bakai TA; Atcha-Oubou T; Tchadjobo T; Rabilloud M; Voirin N BMJ Open; 2024 Jan; 14(1):e066547. PubMed ID: 38296296 [TBL] [Abstract][Full Text] [Related]
8. Developing a dengue prediction model based on climate in Tawau, Malaysia. Jayaraj VJ; Avoi R; Gopalakrishnan N; Raja DB; Umasa Y Acta Trop; 2019 Sep; 197():105055. PubMed ID: 31185224 [TBL] [Abstract][Full Text] [Related]
9. Generalized seasonal autoregressive integrated moving average models for count data with application to malaria time series with low case numbers. Briët OJ; Amerasinghe PH; Vounatsou P PLoS One; 2013; 8(6):e65761. PubMed ID: 23785448 [TBL] [Abstract][Full Text] [Related]
10. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study. Wang YW; Shen ZZ; Jiang Y BMJ Open; 2019 Jun; 9(6):e025773. PubMed ID: 31209084 [TBL] [Abstract][Full Text] [Related]
11. Forecasting malaria cases using climatic factors in delhi, India: a time series analysis. Kumar V; Mangal A; Panesar S; Yadav G; Talwar R; Raut D; Singh S Malar Res Treat; 2014; 2014():482851. PubMed ID: 25147750 [TBL] [Abstract][Full Text] [Related]
12. Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis. Adeola AM; Botai JO; Rautenbach H; Adisa OM; Ncongwane KP; Botai CM; Adebayo-Ojo TC Int J Environ Res Public Health; 2017 Nov; 14(11):. PubMed ID: 29117114 [TBL] [Abstract][Full Text] [Related]
13. Temporal correlation analysis between malaria and meteorological factors in Motuo County, Tibet. Huang F; Zhou S; Zhang S; Wang H; Tang L Malar J; 2011 Mar; 10():54. PubMed ID: 21375751 [TBL] [Abstract][Full Text] [Related]
14. Application of seasonal auto-regressive integrated moving average model in forecasting the incidence of hand-foot-mouth disease in Wuhan, China. Peng Y; Yu B; Wang P; Kong DG; Chen BH; Yang XB J Huazhong Univ Sci Technolog Med Sci; 2017 Dec; 37(6):842-848. PubMed ID: 29270741 [TBL] [Abstract][Full Text] [Related]
15. A Seasonal Autoregressive Integrated Moving Average (SARIMA) forecasting model to predict monthly malaria cases in KwaZulu-Natal, South Africa. Ebhuoma O; Gebreslasie M; Magubane L S Afr Med J; 2018 Jun; 108(7):573-578. PubMed ID: 30004345 [TBL] [Abstract][Full Text] [Related]
16. Comparing the performance of time series models with or without meteorological factors in predicting incident pulmonary tuberculosis in eastern China. Li ZQ; Pan HQ; Liu Q; Song H; Wang JM Infect Dis Poverty; 2020 Nov; 9(1):151. PubMed ID: 33148337 [TBL] [Abstract][Full Text] [Related]
17. [Application of ARIMA model on prediction of malaria incidence]. Jing X; Hua-Xun Z; Wen L; Su-Jian P; Ling-Cong S; Xiao-Rong D; Mu-Min C; Dong-Ni W; Shunxiang C Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2016 Jan; 28(2):135-140. PubMed ID: 29469288 [TBL] [Abstract][Full Text] [Related]
18. Forecasting incidence of infectious diarrhea using random forest in Jiangsu Province, China. Fang X; Liu W; Ai J; He M; Wu Y; Shi Y; Shen W; Bao C BMC Infect Dis; 2020 Mar; 20(1):222. PubMed ID: 32171261 [TBL] [Abstract][Full Text] [Related]
19. [Study on the feasibility for ARIMA model application to predict malaria incidence in an unstable malaria area]. Zhu JM; Tang LH; Zhou SS; Huang F Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2007 Jun; 25(3):232-6. PubMed ID: 18038786 [TBL] [Abstract][Full Text] [Related]
20. Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China. Zhang R; Guo Z; Meng Y; Wang S; Li S; Niu R; Wang Y; Guo Q; Li Y Int J Environ Res Public Health; 2021 Jun; 18(11):. PubMed ID: 34200378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]