BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2081332)

  • 1. Utilization by yeasts of D-glucarate, galactarate, and L-tartarate is uncommon and occurs in strains of Cryptococcus and Trichosporon.
    Schneider H; Biely P; Latta R; Lee H; Dorscheid D; Levy-Rick S
    Can J Microbiol; 1990 Dec; 36(12):856-8. PubMed ID: 2081332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of the Bacillus subtilis D-glucarate/galactarate utilization operon ycbCDEFGHJ.
    Hosoya S; Yamane K; Takeuchi M; Sato T
    FEMS Microbiol Lett; 2002 May; 210(2):193-9. PubMed ID: 12044674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of tartaric acid and related compounds by yeasts: taxonomic implications.
    Fonseca A
    Can J Microbiol; 1992 Dec; 38(12):1242-51. PubMed ID: 1288842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two genes affecting glucarate utilization in Escherichia coli K12.
    Roberton AM; Sullivan PA; Jones-Mortimer MC; Kornberg HL
    J Gen Microbiol; 1980 Apr; 117(2):377-82. PubMed ID: 6999115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A common regulator for the operons encoding the enzymes involved in D-galactarate, D-glucarate, and D-glycerate utilization in Escherichia coli.
    Monterrubio R; Baldoma L; Obradors N; Aguilar J; Badia J
    J Bacteriol; 2000 May; 182(9):2672-4. PubMed ID: 10762278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. alpha-ketoglutaric semialdehyde dehydrogenase isozymes involved in metabolic pathways of D-glucarate, D-galactarate, and hydroxy-L-proline. Molecular and metabolic convergent evolution.
    Watanabe S; Yamada M; Ohtsu I; Makino K
    J Biol Chem; 2007 Mar; 282(9):6685-95. PubMed ID: 17202142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli.
    Hubbard BK; Koch M; Palmer DR; Babbitt PC; Gerlt JA
    Biochemistry; 1998 Oct; 37(41):14369-75. PubMed ID: 9772162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascorbic acid specific utilization by some yeasts.
    Costamagna L; Rosi I; Garuccio I; Arrigoni O
    Can J Microbiol; 1986 Sep; 32(9):756-8. PubMed ID: 3779527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a caffeic acid-ferric citrate test for rapid identification of Cryptococcus neoformans.
    Wang HS; Zeimis RT; Roberts GD
    J Clin Microbiol; 1977 Nov; 6(5):445-9. PubMed ID: 336639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid urea broth test for yeasts.
    Roberts GD; Horstmeier CD; Land GA; Foxworth JH
    J Clin Microbiol; 1978 Jun; 7(6):584-8. PubMed ID: 353068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of a biotin precursor, pimelic acid, in yeasts from C18 fatty acids.
    Ohsugi M; Miyauchi K; Tachibana K; Nakao S
    J Nutr Sci Vitaminol (Tokyo); 1988 Aug; 34(4):343-52. PubMed ID: 3236079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Current Status of Taxonomy of Pathogenic Yeasts].
    Sugita T; Cho O; Takashima M
    Med Mycol J; 2017; 58(3):J77-J81. PubMed ID: 28855483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Typing and patterns of cellular morphological alterations in Cryptococcus neoformans and Cryptococcus gattii isolates exposed to a panel of killer yeasts.
    Fuentefria AM; Faganello J; Pazzini F; Schrank A; Valente P; Vainstein M
    Med Mycol; 2007 Sep; 45(6):503-12. PubMed ID: 17710619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polysaccharides and phenolic compounds as substrate for yeasts isolated from rotten wood and description of Cryptococcus fagi sp.nov.
    Middelhoven WJ
    Antonie Van Leeuwenhoek; 2006 Jul; 90(1):57-67. PubMed ID: 16652205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific enzymatic assay for D-glucarate in human serum.
    Blumenthal HJ; Lucuta VL; Blumenthal DC
    Anal Biochem; 1990 Mar; 185(2):286-93. PubMed ID: 2187374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of enzymatic activities in the enolase superfamily: crystallographic and mutagenesis studies of the reaction catalyzed by D-glucarate dehydratase from Escherichia coli.
    Gulick AM; Hubbard BK; Gerlt JA; Rayment I
    Biochemistry; 2000 Apr; 39(16):4590-602. PubMed ID: 10769114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of opportunistic yeasts on vitamin-free solid medium.
    Vidotto V; Bruatto M; Caramello S; Bugnone C
    Microbiologica; 1990 Apr; 13(2):151-5. PubMed ID: 2191196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast Trichosporon oleaginosus: Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems.
    Kourist R; Bracharz F; Lorenzen J; Kracht ON; Chovatia M; Daum C; Deshpande S; Lipzen A; Nolan M; Ohm RA; Grigoriev IV; Sun S; Heitman J; Brück T; Nowrousian M
    mBio; 2015 Jul; 6(4):e00918. PubMed ID: 26199329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of lycorine on growth and effects of L-galactonic acid-gamma-lactone on ascorbic acid biosynthesis in strains of Cryptococcus laurentii isolated from Narcissus pseudonarcissus roots and bulbs.
    Onofri S; Barreca D; Garuccio I
    Antonie Van Leeuwenhoek; 2003; 83(1):57-61. PubMed ID: 12755480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a commercial multitest system for identification of yeasts.
    Qadri SM; Nichols CW
    Am J Med Technol; 1978 May; 44(5):368-72. PubMed ID: 354378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.