These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. Chakraborty S Anal Chim Acta; 2007 Dec; 605(2):175-84. PubMed ID: 18036381 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application. Chung KH; Hong JW; Lee DS; Yoon HC Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640 [TBL] [Abstract][Full Text] [Related]
7. Gravity-induced reorientation of the interface between two liquids of different densities flowing laminarly through a microchannel. Yoon SK; Mitchell M; Choban ER; Kenis PJ Lab Chip; 2005 Nov; 5(11):1259-63. PubMed ID: 16234949 [TBL] [Abstract][Full Text] [Related]
8. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805 [TBL] [Abstract][Full Text] [Related]
9. Electrokinetic particle entry into microchannels. Zhu J; Hu G; Xuan X Electrophoresis; 2012 Mar; 33(6):916-22. PubMed ID: 22528411 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lee MG; Choi S; Park JK Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733 [TBL] [Abstract][Full Text] [Related]
11. An analytical approach to the effect of finite-sized end reservoirs on electroosmotic transport through narrow confinements. Pal D; Chakraborty S Electrophoresis; 2011 Feb; 32(5):638-45. PubMed ID: 21294133 [TBL] [Abstract][Full Text] [Related]
12. A water-activated pump for portable microfluidic applications. Good BT; Bowman CN; Davis RH J Colloid Interface Sci; 2007 Jan; 305(2):239-49. PubMed ID: 17081553 [TBL] [Abstract][Full Text] [Related]
13. Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels. Girardo S; Cecchini M; Beltram F; Cingolani R; Pisignano D Lab Chip; 2008 Sep; 8(9):1557-63. PubMed ID: 18818813 [TBL] [Abstract][Full Text] [Related]
14. Reservoir-based dielectrophoresis for microfluidic particle separation by charge. Patel S; Qian S; Xuan X Electrophoresis; 2013 Apr; 34(7):961-8. PubMed ID: 23161644 [TBL] [Abstract][Full Text] [Related]
15. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Park JS; Song SH; Jung HI Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305 [TBL] [Abstract][Full Text] [Related]
16. Lateral and cross-lateral focusing of spherical particles in a square microchannel. Choi YS; Seo KW; Lee SJ Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415 [TBL] [Abstract][Full Text] [Related]
17. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects. Jellema LC; Mey T; Koster S; Verpoorte E Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967 [TBL] [Abstract][Full Text] [Related]
18. Inertial microfluidics for continuous particle separation in spiral microchannels. Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752 [TBL] [Abstract][Full Text] [Related]
19. Electrokinetic instability effects in microchannels with and without nanofilm coatings. Fu LM; Hong TF; Wen CY; Tsai CH; Lin CH Electrophoresis; 2008 Dec; 29(24):4871-9. PubMed ID: 19130549 [TBL] [Abstract][Full Text] [Related]
20. A microbead array chemical sensor using capillary-based sample introduction: toward the development of an "electronic tongue". Sohn YS; Goodey A; Anslyn EV; McDevitt JT; Shear JB; Neikirk DP Biosens Bioelectron; 2005 Aug; 21(2):303-12. PubMed ID: 16023957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]