These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 20813377)
21. Surface modification method of microchannels for gas-liquid two-phase flow in microchips. Hibara A; Iwayama S; Matsuoka S; Ueno M; Kikutani Y; Tokeshi M; Kitamori T Anal Chem; 2005 Feb; 77(3):943-7. PubMed ID: 15679365 [TBL] [Abstract][Full Text] [Related]
22. Automatic microfluidic platform for cell separation and nucleus collection. Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288 [TBL] [Abstract][Full Text] [Related]
23. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow. Ashish Saha A; Mitra SK J Colloid Interface Sci; 2009 Nov; 339(2):461-80. PubMed ID: 19732904 [TBL] [Abstract][Full Text] [Related]
24. A model for predicting magnetic particle capture in a microfluidic bioseparator. Furlani EP; Sahoo Y; Ng KC; Wortman JC; Monk TE Biomed Microdevices; 2007 Aug; 9(4):451-63. PubMed ID: 17516176 [TBL] [Abstract][Full Text] [Related]
25. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices. Chun MS; Shim MS; Choi NW Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042 [TBL] [Abstract][Full Text] [Related]
26. A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow. Johann R; Renaud P Electrophoresis; 2004 Nov; 25(21-22):3720-9. PubMed ID: 15565695 [TBL] [Abstract][Full Text] [Related]
27. A unified scaling model for flow through a lattice of microfabricated posts. Srivastava N; Din C; Judson A; MacDonald NC; Meinhart CD Lab Chip; 2010 May; 10(9):1148-52. PubMed ID: 20390133 [TBL] [Abstract][Full Text] [Related]
28. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
29. Transient electrophoretic motion of a charged particle through a converging-diverging microchannel: effect of direct current-dielectrophoretic force. Ai Y; Joo SW; Jiang Y; Xuan X; Qian S Electrophoresis; 2009 Jul; 30(14):2499-506. PubMed ID: 19639572 [TBL] [Abstract][Full Text] [Related]
30. Numerical studies of electrokinetic control of DNA concentration in a closed-end microchannel. Daghighi Y; Li D Electrophoresis; 2010 Mar; 31(5):868-78. PubMed ID: 20191548 [TBL] [Abstract][Full Text] [Related]
31. High performance microfluidic capillary electrophoresis devices. Fu LM; Leong JC; Lin CF; Tai CH; Tsai CH Biomed Microdevices; 2007 Jun; 9(3):405-12. PubMed ID: 17487587 [TBL] [Abstract][Full Text] [Related]
32. 3-D transient electrophoretic motion of a spherical particle in a T-shaped rectangular microchannel. Ye C; Li D J Colloid Interface Sci; 2004 Apr; 272(2):480-8. PubMed ID: 15028514 [TBL] [Abstract][Full Text] [Related]
33. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel. Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185 [TBL] [Abstract][Full Text] [Related]
34. Structuring bubbles and foams in gelatine solutions within a circular microchannel device. Skurtys O; Aguilera JM J Colloid Interface Sci; 2008 Feb; 318(2):380-8. PubMed ID: 17991482 [TBL] [Abstract][Full Text] [Related]
35. Interface motion of capillary-driven flow in rectangular microchannel. Ichikawa N; Hosokawa K; Maeda R J Colloid Interface Sci; 2004 Dec; 280(1):155-64. PubMed ID: 15476786 [TBL] [Abstract][Full Text] [Related]
36. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Yang S; Kim JY; Lee SJ; Lee SS; Kim JM Lab Chip; 2011 Jan; 11(2):266-73. PubMed ID: 20976348 [TBL] [Abstract][Full Text] [Related]
37. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Yamada M; Seki M Lab Chip; 2005 Nov; 5(11):1233-9. PubMed ID: 16234946 [TBL] [Abstract][Full Text] [Related]
38. Continuous particle separation in spiral microchannels using Dean flows and differential migration. Bhagat AA; Kuntaegowdanahalli SS; Papautsky I Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692 [TBL] [Abstract][Full Text] [Related]
39. Modelling and simulation of the behaviour of a biofluid in a microchannel biochip separator. Xue X; Patel MK; Kersaudy-Kerhoas M; Bailey C; Desmulliez MP Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):549-60. PubMed ID: 21331958 [TBL] [Abstract][Full Text] [Related]
40. Centrifugal sedimentation for selectively packing channels with silica microbeads in three-dimensional micro/nanofluidic devices. Gong M; Bohn PW; Sweedler JV Anal Chem; 2009 Mar; 81(5):2022-6. PubMed ID: 19182940 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]