These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 20813377)

  • 41. Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method.
    Wang M; Wang J; Chen S; Pan N
    J Colloid Interface Sci; 2006 Dec; 304(1):246-53. PubMed ID: 16989843
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications.
    Sochol RD; Lu A; Lei J; Iwai K; Lee LP; Lin L
    Lab Chip; 2014 May; 14(9):1585-94. PubMed ID: 24632685
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes.
    Gong M; Flachsbart BR; Shannon MA; Bohn PW; Sweedler JV
    Electrophoresis; 2008 Mar; 29(6):1237-44. PubMed ID: 18288777
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel.
    Foley JO; Mashadi-Hossein A; Fu E; Finlayson BA; Yager P
    Lab Chip; 2008 Apr; 8(4):557-64. PubMed ID: 18369510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical simulation on mass transport in a microchannel bioreactor for co-culture applications.
    Zeng Y; Lee TS; Yu P; Low HT
    J Biomech Eng; 2007 Jun; 129(3):365-73. PubMed ID: 17536903
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Facile single step fabrication of microchannels with varying size.
    Asthana A; Kim KO; Perumal J; Kim DM; Kim DP
    Lab Chip; 2009 Apr; 9(8):1138-42. PubMed ID: 19350097
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel.
    Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Time-of-flight thermal flowrate sensor for lab-on-chip applications.
    Berthet H; Jundt J; Durivault J; Mercier B; Angelescu D
    Lab Chip; 2011 Jan; 11(2):215-23. PubMed ID: 21072440
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gravity-induced convective flow in microfluidic systems: electrochemical characterization and application to enzyme-linked immunosorbent assay tests.
    Morier P; Vollet C; Michel PE; Reymond F; Rossier JS
    Electrophoresis; 2004 Nov; 25(21-22):3761-8. PubMed ID: 15565685
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays.
    Zimmermann M; Delamarche E; Wolf M; Hunziker P
    Biomed Microdevices; 2005 Jun; 7(2):99-110. PubMed ID: 15940422
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acoustic particle filter with adjustable effective pore size for automated sample preparation.
    Jung B; Fisher K; Ness KD; Rose KA; Mariella RP
    Anal Chem; 2008 Nov; 80(22):8447-52. PubMed ID: 18847218
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantification of electrical field-induced flow reversal in a microchannel.
    Pirat C; Naso A; van der Wouden EJ; Gardeniers JG; Lohse D; van den Berg A
    Lab Chip; 2008 Jun; 8(6):945-9. PubMed ID: 18497916
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8.
    Zhang J; Chan-Park MB; Conner SR
    Lab Chip; 2004 Dec; 4(6):646-53. PubMed ID: 15570379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrokinetic transport through rough microchannels.
    Hu Y; Werner C; Li D
    Anal Chem; 2003 Nov; 75(21):5747-58. PubMed ID: 14588014
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling of nucleic acid adsorption on 3D prisms in microchannels.
    Hu Y; Li D
    Anal Chim Acta; 2007 Jan; 581(1):42-52. PubMed ID: 17386424
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Parameters influencing pulsed flow mixing in microchannels.
    Glasgow I; Lieber S; Aubry N
    Anal Chem; 2004 Aug; 76(16):4825-32. PubMed ID: 15307794
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toolbox for the design of optimized microfluidic components.
    Mott DR; Howell PB; Golden JP; Kaplan CR; Ligler FS; Oran ES
    Lab Chip; 2006 Apr; 6(4):540-9. PubMed ID: 16572217
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mass transport in a porous microchannel for non-Newtonian fluid with electrokinetic effects.
    Mondal S; De S
    Electrophoresis; 2013 Mar; 34(5):668-73. PubMed ID: 23192435
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Diffusioosmotic flow in rectangular microchannels.
    Hoshyargar V; Nezameddin Ashrafizadeh S; Sadeghi A
    Electrophoresis; 2016 Mar; 37(5-6):809-17. PubMed ID: 26995195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.