These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20813384)

  • 1. Lupin pyranoisoflavones inhibiting hyphal development in arbuscular mycorrhizal fungi.
    Akiyama K; Tanigawa F; Kashihara T; Hayashi H
    Phytochemistry; 2010 Nov; 71(16):1865-71. PubMed ID: 20813384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants.
    Yoneyama K; Xie X; Sekimoto H; Takeuchi Y; Ogasawara S; Akiyama K; Hayashi H; Yoneyama K
    New Phytol; 2008 Jul; 179(2):484-494. PubMed ID: 19086293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi.
    Akiyama K; Matsuzaki K; Hayashi H
    Nature; 2005 Jun; 435(7043):824-7. PubMed ID: 15944706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi.
    Mori N; Nishiuma K; Sugiyama T; Hayashi H; Akiyama K
    Phytochemistry; 2016 Oct; 130():90-8. PubMed ID: 27264641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae.
    Vierheilig H; Lerat S; Piché Y
    Mycorrhiza; 2003 Jun; 13(3):167-70. PubMed ID: 12836085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural requirements of strigolactones for hyphal branching in AM fungi.
    Akiyama K; Ogasawara S; Ito S; Hayashi H
    Plant Cell Physiol; 2010 Jul; 51(7):1104-17. PubMed ID: 20418334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initiation of arbuscular mycorrhizal symbiosis involves a novel pathway independent from hyphal branching.
    Taulera Q; Lauressergues D; Martin K; Cadoret M; Servajean V; Boyer FD; Rochange S
    Mycorrhiza; 2020 Jul; 30(4):491-501. PubMed ID: 32506172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.
    Takeda N; Handa Y; Tsuzuki S; Kojima M; Sakakibara H; Kawaguchi M
    Plant Physiol; 2015 Feb; 167(2):545-57. PubMed ID: 25527715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates.
    Buee M; Rossignol M; Jauneau A; Ranjeva R; Bécard G
    Mol Plant Microbe Interact; 2000 Jun; 13(6):693-8. PubMed ID: 10830269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common and divergent shoot-root signalling in legume symbioses.
    Foo E; Heynen EM; Reid JB
    New Phytol; 2016 Apr; 210(2):643-56. PubMed ID: 26661110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of methanol eluates from Ginkgo biloba root on growth and development of arbuscular mycorrhizal fungi cultured in vitro].
    Zhang Y; Xie L; Xiong B; Zeng M
    Ying Yong Sheng Tai Xue Bao; 2003 Dec; 14(12):2233-6. PubMed ID: 15031923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolated root caps, border cells, and mucilage from host roots stimulate hyphal branching of the arbuscular mycorrhizal fungus, Gigaspora gigantea.
    Nagahashi G; Douds DD
    Mycol Res; 2004 Sep; 108(Pt 9):1079-88. PubMed ID: 15506019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible involvement of hyphal phosphatase in phosphate efflux from intraradical hyphae isolated from mycorrhizal roots colonized by Gigaspora margarita.
    Kojima T; Saito M
    Mycol Res; 2004 Jun; 108(Pt 6):610-5. PubMed ID: 15323242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced hyphal growth of arbuscular mycorrhizae by root exudates derived from high R/FR treated Lotus japonicus.
    Nagata M; Yamamoto N; Miyamoto T; Shimomura A; Arima S; Hirsch AM; Suzuki A
    Plant Signal Behav; 2016 Jun; 11(6):e1187356. PubMed ID: 27191935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separated components of root exudate and cytosol stimulate different morphologically identifiable types of branching responses by arbuscular mycorrhizal fungi.
    Nagahashi G; Douds D
    Mycol Res; 2007 Apr; 111(Pt 4):487-92. PubMed ID: 17544057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus.
    Scervino JM; Ponce MA; Erra-Bassells R; Vierheilig H; Ocampo JA; Godeas A
    Mycol Res; 2005 Jul; 109(Pt 7):789-94. PubMed ID: 16121564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria.
    Besserer A; Puech-Pagès V; Kiefer P; Gomez-Roldan V; Jauneau A; Roy S; Portais JC; Roux C; Bécard G; Séjalon-Delmas N
    PLoS Biol; 2006 Jul; 4(7):e226. PubMed ID: 16787107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi.
    Nagahashi G; Douds DD
    Fungal Biol; 2011; 115(4-5):351-8. PubMed ID: 21530917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lotuslactone, a non-canonical strigolactone from Lotus japonicus.
    Xie X; Mori N; Yoneyama K; Nomura T; Uchida K; Yoneyama K; Akiyama K
    Phytochemistry; 2019 Jan; 157():200-205. PubMed ID: 30439621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.).
    Chen BD; Liu Y; Shen H; Li XL; Christie P
    Mycorrhiza; 2004 Dec; 14(6):347-54. PubMed ID: 14661105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.