These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20813637)

  • 1. Continuous attractors of Lotka-Volterra recurrent neural networks with infinite neurons.
    Yu J; Yi Z; Zhou J
    IEEE Trans Neural Netw; 2010 Oct; 21(10):1690-5. PubMed ID: 20813637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representations of continuous attractors of recurrent neural networks.
    Yu J; Yi Z; Zhang L
    IEEE Trans Neural Netw; 2009 Feb; 20(2):368-72. PubMed ID: 19150791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foundations of implementing the competitive layer model by Lotka-Volterra recurrent neural networks.
    Yi Z
    IEEE Trans Neural Netw; 2010 Mar; 21(3):494-507. PubMed ID: 20142165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics and computation of continuous attractors.
    Wu S; Hamaguchi K; Amari S
    Neural Comput; 2008 Apr; 20(4):994-1025. PubMed ID: 18085986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nontrivial global attractors in 2-D multistable attractor neural networks.
    Zou L; Tang H; Tan KC; Zhang W
    IEEE Trans Neural Netw; 2009 Nov; 20(11):1842-51. PubMed ID: 19884069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Context-dependent retrieval of information by neural-network dynamics with continuous attractors.
    Tsuboshita Y; Okamoto H
    Neural Netw; 2007 Aug; 20(6):705-13. PubMed ID: 17446042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of continuous attractors for 2-D linear threshold neural networks.
    Zou L; Tang H; Tan KC; Zhang W
    IEEE Trans Neural Netw; 2009 Jan; 20(1):175-80. PubMed ID: 19129036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of continuous attractor networks with monotonic tuning using a symmetry principle.
    Machens CK; Brody CD
    Neural Comput; 2008 Feb; 20(2):452-85. PubMed ID: 18047414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the origin of reproducible sequential activity in neural circuits.
    Afraimovich VS; Zhigulin VP; Rabinovich MI
    Chaos; 2004 Dec; 14(4):1123-9. PubMed ID: 15568926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Memory dynamics in attractor networks with saliency weights.
    Tang H; Li H; Yan R
    Neural Comput; 2010 Jul; 22(7):1899-926. PubMed ID: 20235821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified approach to building and controlling spiking attractor networks.
    Eliasmith C
    Neural Comput; 2005 Jun; 17(6):1276-314. PubMed ID: 15901399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between eigenvalue spectra and dynamics of neural networks.
    Zhou Q; Jin T; Zhao H
    Neural Comput; 2009 Oct; 21(10):2931-41. PubMed ID: 19635013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous motion on two-dimensional continuous attractors.
    Fung CC; Amari SI
    Neural Comput; 2015 Mar; 27(3):507-47. PubMed ID: 25602773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attractors: architects of network organization?
    Mpitsos GJ
    Brain Behav Evol; 2000 May; 55(5):256-77. PubMed ID: 10971012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computing with continuous attractors: stability and online aspects.
    Wu S; Amari S
    Neural Comput; 2005 Oct; 17(10):2215-39. PubMed ID: 16105223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent neural states: stationary localized activity patterns in nonlinear continuous n-population, q-dimensional neural networks.
    Faugeras O; Veltz R; Grimbert F
    Neural Comput; 2009 Jan; 21(1):147-87. PubMed ID: 19431281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.
    Alemi A; Baldassi C; Brunel N; Zecchina R
    PLoS Comput Biol; 2015 Aug; 11(8):e1004439. PubMed ID: 26291608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network capacity analysis for latent attractor computation.
    Doboli S; Minai AA
    Network; 2003 May; 14(2):273-302. PubMed ID: 12790185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple almost periodic solutions in nonautonomous delayed neural networks.
    Lin KH; Shih CW
    Neural Comput; 2007 Dec; 19(12):3392-420. PubMed ID: 17970659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.