These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 20813832)
1. Systemic low temperature signaling in Arabidopsis. Gorsuch PA; Sargeant AW; Penfield SD; Quick WP; Atkin OK Plant Cell Physiol; 2010 Sep; 51(9):1488-98. PubMed ID: 20813832 [TBL] [Abstract][Full Text] [Related]
2. Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 degrees C in different Arabidopsis thaliana accessions. Le MQ; Engelsberger WR; Hincha DK Cryobiology; 2008 Oct; 57(2):104-12. PubMed ID: 18619434 [TBL] [Abstract][Full Text] [Related]
3. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Franklin KA; Whitelam GC Nat Genet; 2007 Nov; 39(11):1410-3. PubMed ID: 17965713 [TBL] [Abstract][Full Text] [Related]
4. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Vogel JT; Zarka DG; Van Buskirk HA; Fowler SG; Thomashow MF Plant J; 2005 Jan; 41(2):195-211. PubMed ID: 15634197 [TBL] [Abstract][Full Text] [Related]
5. Differential expression of the CBF pathway and cell cycle-related genes in Arabidopsis accessions in response to chronic low-temperature exposure. Lee YP; Fleming AJ; Körner Ch; Meins F Plant Biol (Stuttg); 2009 May; 11(3):273-83. PubMed ID: 19470100 [TBL] [Abstract][Full Text] [Related]
6. A moderate decrease in temperature induces COR15a expression through the CBF signaling cascade and enhances freezing tolerance. Wang Y; Hua J Plant J; 2009 Oct; 60(2):340-9. PubMed ID: 19563440 [TBL] [Abstract][Full Text] [Related]
7. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Fursova OV; Pogorelko GV; Tarasov VA Gene; 2009 Jan; 429(1-2):98-103. PubMed ID: 19026725 [TBL] [Abstract][Full Text] [Related]
8. CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Zhou MQ; Shen C; Wu LH; Tang KX; Lin J Crit Rev Biotechnol; 2011 Jun; 31(2):186-92. PubMed ID: 20919819 [TBL] [Abstract][Full Text] [Related]
9. Fitness benefits and costs of cold acclimation in Arabidopsis thaliana. Zhen Y; Dhakal P; Ungerer MC Am Nat; 2011 Jul; 178(1):44-52. PubMed ID: 21670576 [TBL] [Abstract][Full Text] [Related]
10. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis. Zhai H; Bai X; Zhu Y; Li Y; Cai H; Ji W; Ji Z; Liu X; Liu X; Li J Biochem Biophys Res Commun; 2010 Apr; 394(4):1018-23. PubMed ID: 20331973 [TBL] [Abstract][Full Text] [Related]
11. Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Zuther E; Schulz E; Childs LH; Hincha DK Plant Cell Environ; 2012 Oct; 35(10):1860-78. PubMed ID: 22512351 [TBL] [Abstract][Full Text] [Related]
12. Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. McKhann HI; Gery C; Bérard A; Lévêque S; Zuther E; Hincha DK; De Mita S; Brunel D; Téoulé E BMC Plant Biol; 2008 Oct; 8():105. PubMed ID: 18922165 [TBL] [Abstract][Full Text] [Related]
13. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Shinwari ZK; Nakashima K; Miura S; Kasuga M; Seki M; Yamaguchi-Shinozaki K; Shinozaki K Biochem Biophys Res Commun; 1998 Sep; 250(1):161-70. PubMed ID: 9735350 [TBL] [Abstract][Full Text] [Related]
14. Thermal de-acclimation: how permanent are leaf phenotypes when cold-acclimated plants experience warming? Gorsuch PA; Pandey S; Atkin OK Plant Cell Environ; 2010 Jul; 33(7):1124-37. PubMed ID: 20199622 [TBL] [Abstract][Full Text] [Related]
15. Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. Rohde P; Hincha DK; Heyer AG Plant J; 2004 Jun; 38(5):790-9. PubMed ID: 15144380 [TBL] [Abstract][Full Text] [Related]
16. Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Catala R; Santos E; Alonso JM; Ecker JR; Martinez-Zapater JM; Salinas J Plant Cell; 2003 Dec; 15(12):2940-51. PubMed ID: 14630965 [TBL] [Abstract][Full Text] [Related]
17. Costs and benefits of cold tolerance in transgenic Arabidopsis thaliana. Jackson MW; Stinchcombe JR; Korves TM; Schmitt J Mol Ecol; 2004 Nov; 13(11):3609-15. PubMed ID: 15488017 [TBL] [Abstract][Full Text] [Related]
18. Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. El Kayal W; Navarro M; Marque G; Keller G; Marque C; Teulieres C J Exp Bot; 2006; 57(10):2455-69. PubMed ID: 16816002 [TBL] [Abstract][Full Text] [Related]
19. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276 [TBL] [Abstract][Full Text] [Related]
20. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Zhu J; Shi H; Lee BH; Damsz B; Cheng S; Stirm V; Zhu JK; Hasegawa PM; Bressan RA Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9873-8. PubMed ID: 15205481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]