These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 20813865)
21. WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia. Thomson MN; Cuevas CA; Bewarder TM; Dittmayer C; Miller LN; Si J; Cornelius RJ; Su XT; Yang CL; McCormick JA; Hadchouel J; Ellison DH; Bachmann S; Mutig K Am J Physiol Renal Physiol; 2020 Jan; 318(1):F216-F228. PubMed ID: 31736353 [TBL] [Abstract][Full Text] [Related]
22. Molecular insights from dysregulation of the thiazide-sensitive WNK/SPAK/NCC pathway in the kidney: Gordon syndrome and thiazide-induced hyponatraemia. Glover M; O'Shaughnessy KM Clin Exp Pharmacol Physiol; 2013 Dec; 40(12):876-84. PubMed ID: 23683032 [TBL] [Abstract][Full Text] [Related]
23. Activation of the thiazide-sensitive Na+-Cl- cotransporter by the WNK-regulated kinases SPAK and OSR1. Richardson C; Rafiqi FH; Karlsson HK; Moleleki N; Vandewalle A; Campbell DG; Morrice NA; Alessi DR J Cell Sci; 2008 Mar; 121(Pt 5):675-84. PubMed ID: 18270262 [TBL] [Abstract][Full Text] [Related]
24. A SPAK isoform switch modulates renal salt transport and blood pressure. McCormick JA; Mutig K; Nelson JH; Saritas T; Hoorn EJ; Yang CL; Rogers S; Curry J; Delpire E; Bachmann S; Ellison DH Cell Metab; 2011 Sep; 14(3):352-64. PubMed ID: 21907141 [TBL] [Abstract][Full Text] [Related]
25. Novel mechanisms of Na+ retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK. Davies M; Fraser SA; Galic S; Choy SW; Katerelos M; Gleich K; Kemp BE; Mount PF; Power DA Am J Physiol Renal Physiol; 2014 Jul; 307(1):F96-F106. PubMed ID: 24808538 [TBL] [Abstract][Full Text] [Related]
26. Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways. Richardson C; Sakamoto K; de los Heros P; Deak M; Campbell DG; Prescott AR; Alessi DR J Cell Sci; 2011 Mar; 124(Pt 5):789-800. PubMed ID: 21321328 [TBL] [Abstract][Full Text] [Related]
27. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. Moriguchi T; Urushiyama S; Hisamoto N; Iemura S; Uchida S; Natsume T; Matsumoto K; Shibuya H J Biol Chem; 2005 Dec; 280(52):42685-93. PubMed ID: 16263722 [TBL] [Abstract][Full Text] [Related]
28. Phosphorylation regulates NCC stability and transporter activity in vivo. Yang SS; Fang YW; Tseng MH; Chu PY; Yu IS; Wu HC; Lin SW; Chau T; Uchida S; Sasaki S; Lin YF; Sytwu HK; Lin SH J Am Soc Nephrol; 2013 Oct; 24(10):1587-97. PubMed ID: 23833262 [TBL] [Abstract][Full Text] [Related]
29. Inhibition of WNK3 Kinase Signaling Reduces Brain Damage and Accelerates Neurological Recovery After Stroke. Begum G; Yuan H; Kahle KT; Li L; Wang S; Shi Y; Shmukler BE; Yang SS; Lin SH; Alper SL; Sun D Stroke; 2015 Jul; 46(7):1956-1965. PubMed ID: 26069258 [TBL] [Abstract][Full Text] [Related]
30. The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl- co-transporters. de Los Heros P; Alessi DR; Gourlay R; Campbell DG; Deak M; Macartney TJ; Kahle KT; Zhang J Biochem J; 2014 Mar; 458(3):559-73. PubMed ID: 24393035 [TBL] [Abstract][Full Text] [Related]
31. WNK signalling pathways in blood pressure regulation. Murthy M; Kurz T; O'Shaughnessy KM Cell Mol Life Sci; 2017 Apr; 74(7):1261-1280. PubMed ID: 27815594 [TBL] [Abstract][Full Text] [Related]
32. On the substrate recognition and negative regulation of SPAK, a kinase modulating Na+-K+-2Cl- cotransport activity. Gagnon KB; Delpire E Am J Physiol Cell Physiol; 2010 Sep; 299(3):C614-20. PubMed ID: 20463172 [TBL] [Abstract][Full Text] [Related]
33. Kinase Scaffold Cab39 Is Necessary for Phospho-Activation of the Thiazide-Sensitive NCC. Ferdaus MZ; Koumangoye RB; Welling PA; Delpire E Hypertension; 2024 Apr; 81(4):801-810. PubMed ID: 38258567 [TBL] [Abstract][Full Text] [Related]
34. Suppression of WNK1-SPAK/OSR1 Attenuates Bone Cancer Pain by Regulating NKCC1 and KCC2. Gao JL; Peng K; Shen MW; Hou YH; Qian XB; Meng XW; Ji FH; Wang LN; Yang JP J Pain; 2019 Dec; 20(12):1416-1428. PubMed ID: 31085334 [TBL] [Abstract][Full Text] [Related]
35. WNK4 is indispensable for the pathogenesis of pseudohypoaldosteronism type II caused by mutant KLHL3. Susa K; Sohara E; Takahashi D; Okado T; Rai T; Uchida S Biochem Biophys Res Commun; 2017 Sep; 491(3):727-732. PubMed ID: 28743496 [TBL] [Abstract][Full Text] [Related]
36. STE20/SPS1-related proline/alanine-rich kinase is involved in plasticity of GABA signaling function in a mouse model of acquired epilepsy. Yang L; Cai X; Zhou J; Chen S; Chen Y; Chen Z; Wang Q; Fang Z; Zhou L PLoS One; 2013; 8(9):e74614. PubMed ID: 24058604 [TBL] [Abstract][Full Text] [Related]
37. NF-κB Signaling-Mediated Activation of WNK-SPAK-NKCC1 Cascade in Worsened Stroke Outcomes of Ang II-Hypertensive Mice. Bhuiyan MIH; Young CB; Jahan I; Hasan MN; Fischer S; Meor Azlan NF; Liu M; Chattopadhyay A; Huang H; Kahle KT; Zhang J; Poloyac SM; Molyneaux BJ; Straub AC; Deng X; Gomez D; Sun D Stroke; 2022 May; 53(5):1720-1734. PubMed ID: 35272484 [TBL] [Abstract][Full Text] [Related]
38. Regulation of NKCC2 activity by inhibitory SPAK isoforms: KS-SPAK is a more potent inhibitor than SPAK2. Park HJ; Curry JN; McCormick JA Am J Physiol Renal Physiol; 2013 Dec; 305(12):F1687-96. PubMed ID: 24133122 [TBL] [Abstract][Full Text] [Related]
39. WNK3-SPAK interaction is required for the modulation of NCC and other members of the SLC12 family. Pacheco-Alvarez D; Vázquez N; Castañeda-Bueno M; de-Los-Heros P; Cortes-González C; Moreno E; Meade P; Bobadilla NA; Gamba G Cell Physiol Biochem; 2012; 29(1-2):291-302. PubMed ID: 22415098 [TBL] [Abstract][Full Text] [Related]
40. OSR1 and SPAK cooperatively modulate Sertoli cell support of mouse spermatogenesis. Liu YL; Yang SS; Chen SJ; Lin YC; Chu CC; Huang HH; Chang FW; Yu MH; Lin SH; Wu GJ; Sytwu HK Sci Rep; 2016 Nov; 6():37205. PubMed ID: 27853306 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]