These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20815057)

  • 1. Effect of the extracranial deep brain stimulation lead on radiofrequency heating at 9.4 Tesla (400.2 MHz).
    Shrivastava D; Abosch A; Hanson T; Tian J; Gupte A; Iaizzo PA; Vaughan JT
    J Magn Reson Imaging; 2010 Sep; 32(3):600-7. PubMed ID: 20815057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurostimulation systems for deep brain stimulation: in vitro evaluation of magnetic resonance imaging-related heating at 1.5 tesla.
    Rezai AR; Finelli D; Nyenhuis JA; Hrdlicka G; Tkach J; Sharan A; Rugieri P; Stypulkowski PH; Shellock FG
    J Magn Reson Imaging; 2002 Mar; 15(3):241-50. PubMed ID: 11891968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heating induced near deep brain stimulation lead electrodes during magnetic resonance imaging with a 3 T transceive volume head coil.
    Shrivastava D; Abosch A; Hughes J; Goerke U; DelaBarre L; Visaria R; Harel N; Vaughan JT
    Phys Med Biol; 2012 Sep; 57(17):5651-65. PubMed ID: 22892760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of surgical modification of deep brain stimulation lead trajectories on radiofrequency heating during MRI at 3T: from phantom experiments to clinical implementation.
    Vu J; Bhusal B; Rosenow JM; Pilitsis J; Golestanirad L
    J Neurosurg; 2024 May; 140(5):1459-1470. PubMed ID: 37948679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-Tesla MRI of deep brain stimulation patients: safety assessment of coils and pulse sequences.
    Boutet A; Hancu I; Saha U; Crawley A; Xu DS; Ranjan M; Hlasny E; Chen R; Foltz W; Sammartino F; Coblentz A; Kucharczyk W; Lozano AM
    J Neurosurg; 2019 Feb; 132(2):586-594. PubMed ID: 30797197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiofrequency heating in porcine models with a "large" 32 cm internal diameter, 7 T (296 MHz) head coil.
    Shrivastava D; Hanson T; Kulesa J; Tian J; Adriany G; Vaughan JT
    Magn Reson Med; 2011 Jul; 66(1):255-63. PubMed ID: 21337423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local SAR near deep brain stimulation (DBS) electrodes at 64 and 127 MHz: A simulation study of the effect of extracranial loops.
    Golestanirad L; Angelone LM; Iacono MI; Katnani H; Wald LL; Bonmassar G
    Magn Reson Med; 2017 Oct; 78(4):1558-1565. PubMed ID: 27797157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI.
    McElcheran CE; Golestanirad L; Iacono MI; Wei PS; Yang B; Anderson KJT; Bonmassar G; Graham SJ
    Sci Rep; 2019 Feb; 9(1):2124. PubMed ID: 30765724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A workflow for predicting radiofrequency-induced heating around bilateral deep brain stimulation electrodes in MRI.
    Zulkarnain NIH; Sadeghi-Tarakameh A; Thotland J; Harel N; Eryaman Y
    Med Phys; 2024 Feb; 51(2):1007-1018. PubMed ID: 38153187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of RF heating during 3.0-T MRI of a pig implanted with deep brain stimulator.
    Gorny KR; Presti MF; Goerss SJ; Hwang SC; Jang DP; Kim I; Min HK; Shu Y; Favazza CP; Lee KH; Bernstein MA
    Magn Reson Imaging; 2013 Jun; 31(5):783-8. PubMed ID: 23228310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging.
    McElcheran CE; Yang B; Anderson KJ; Golenstani-Rad L; Graham SJ
    PLoS One; 2015; 10(8):e0134379. PubMed ID: 26237218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of RF heating of deep brain stimulation devices in vertical vs. horizontal MRI systems.
    Vu J; Bhusal B; Nguyen BT; Sanpitak P; Nowac E; Pilitsis J; Rosenow J; Golestanirad L
    PLoS One; 2022; 17(12):e0278187. PubMed ID: 36490249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Device Configuration and Patient's Body Composition on the RF Heating and Nonsusceptibility Artifact of Deep Brain Stimulation Implants During MRI at 1.5T and 3T.
    Bhusal B; Nguyen BT; Sanpitak PP; Vu J; Elahi B; Rosenow J; Nolt MJ; Lopez-Rosado R; Pilitsis J; DiMarzio M; Golestanirad L
    J Magn Reson Imaging; 2021 Feb; 53(2):599-610. PubMed ID: 32860322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of magnetic resonance imaging-related heating in deep brain stimulation leads using a lead management device.
    Baker KB; Tkach J; Hall JD; Nyenhuis JA; Shellock FG; Rezai AR
    Neurosurgery; 2005 Oct; 57(4 Suppl):392-7; discussion 392-7. PubMed ID: 16234691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilateral neurostimulation systems used for deep brain stimulation: in vitro study of MRI-related heating at 1.5 T and implications for clinical imaging of the brain.
    Bhidayasiri R; Bronstein JM; Sinha S; Krahl SE; Ahn S; Behnke EJ; Cohen MS; Frysinger R; Shellock FG
    Magn Reson Imaging; 2005 May; 23(4):549-55. PubMed ID: 15919600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability in RF-induced heating of a deep brain stimulation implant across MR systems.
    Baker KB; Tkach JA; Phillips MD; Rezai AR
    J Magn Reson Imaging; 2006 Dec; 24(6):1236-42. PubMed ID: 17078088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A workflow for predicting temperature increase at the electrical contacts of deep brain stimulation electrodes undergoing MRI.
    Sadeghi-Tarakameh A; Zulkarnain NIH; He X; Atalar E; Harel N; Eryaman Y
    Magn Reson Med; 2022 Nov; 88(5):2311-2325. PubMed ID: 35781696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple geometric analysis method for measuring and mitigating RF induced currents on Deep Brain Stimulation leads by multichannel transmission/reception.
    Eryaman Y; Kobayashi N; Moen S; Aman J; Grant A; Vaughan JT; Molnar G; Park MC; Vitek J; Adriany G; Ugurbil K; Harel N
    Neuroimage; 2019 Jan; 184():658-668. PubMed ID: 30273715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical open-bore MRI scanners generate significantly less radiofrequency heating around implanted leads: A study of deep brain stimulation implants in 1.2T OASIS scanners versus 1.5T horizontal systems.
    Kazemivalipour E; Bhusal B; Vu J; Lin S; Nguyen BT; Kirsch J; Nowac E; Pilitsis J; Rosenow J; Atalar E; Golestanirad L
    Magn Reson Med; 2021 Sep; 86(3):1560-1572. PubMed ID: 33961301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.