These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 20815082)

  • 1. Theophylline-loaded compritol microspheres prepared by ultrasound-assisted atomization.
    Fini A; Cavallari C; Ospitali F; Gonzalez-Rodriguez ML
    J Pharm Sci; 2011 Feb; 100(2):743-57. PubMed ID: 20815082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formulation, characterization and in vitro evaluation of theophylline-loaded Eudragit RS 100 microspheres prepared by an emulsion-solvent diffusion/evaporation technique.
    Jelvehgari M; Barar J; Valizadeh H; Shadrou S; Nokhodchi A
    Pharm Dev Technol; 2011; 16(6):637-44. PubMed ID: 20722498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of sustained-release Compritol® 888 ATO matrix mini-tablets.
    Roberts M; Vellucci D; Mostafa S; Miolane C; Marchaud D
    Drug Dev Ind Pharm; 2012 Sep; 38(9):1068-76. PubMed ID: 22149472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-destructive methods of characterization of risperidone solid lipid nanoparticles.
    Rahman Z; Zidan AS; Khan MA
    Eur J Pharm Biopharm; 2010 Sep; 76(1):127-37. PubMed ID: 20470882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot-melt coating technology. I. Influence of Compritol 888 Ato and granule size on theophylline release.
    Faham A; Prinderre P; Farah N; Eichler KD; Kalantzis G; Joachim J
    Drug Dev Ind Pharm; 2000 Feb; 26(2):167-76. PubMed ID: 10697753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromeritics and release behaviours of cellulose acetate butyrate microspheres containing theophylline prepared by emulsion solvent evaporation and emulsion non-solvent addition method.
    Jelvehgari M; Atapour F; Nokhodchi A
    Arch Pharm Res; 2009 Jul; 32(7):1019-28. PubMed ID: 19641883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of enteric-coated calcium pectinate microspheres intended for colonic drug delivery.
    Maestrelli F; Cirri M; Corti G; Mennini N; Mura P
    Eur J Pharm Biopharm; 2008 Jun; 69(2):508-18. PubMed ID: 18194852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diclofenac salts, part 6: release from lipid microspheres.
    Fini A; Cavallari C; Rabasco Alvarez AM; Rodriguez MG
    J Pharm Sci; 2011 Aug; 100(8):3482-3494. PubMed ID: 21523784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled release of tinidazole and theophylline from chitosan based composite hydrogels.
    Samanta HS; Ray SK
    Carbohydr Polym; 2014 Jun; 106():109-20. PubMed ID: 24721057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid lipid extrudates as sustained-release matrices: the effect of surface structure on drug release properties.
    Reitz C; Strachan C; Kleinebudde P
    Eur J Pharm Sci; 2008 Nov; 35(4):335-43. PubMed ID: 18765281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lappaconitine-loaded microspheres for parenteral sustained release: effects of formulation variables and in vitro characterization.
    Xu H; Zhong H; Liu M; Xu C; Gao Y
    Pharmazie; 2011 Sep; 66(9):654-61. PubMed ID: 22026119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of sustained release aceclofenac microspheres using response surface methodology.
    Deshmukh RK; Naik JB
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():197-204. PubMed ID: 25579914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of ethylcellulose molecular weight on the properties of theophylline microspheres.
    Dashevsky A; Zessin G
    J Microencapsul; 1997; 14(3):273-80. PubMed ID: 9147278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, characterization and in vitro evaluation of stavudine-loaded microspheres.
    Vaghani SS; Sureja S; Singh S; Gurjar M; Jivani NP; Patel MM
    Pharm Dev Technol; 2011 Apr; 16(2):146-51. PubMed ID: 20100058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Aerosil on the properties of lipid controlled release microparticles.
    Albertini B; Passerini N; González-Rodríguez ML; Perissutti B; Rodriguez L
    J Control Release; 2004 Nov; 100(2):233-46. PubMed ID: 15544871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of hot-melt extruded theophylline tablets containing poly(vinyl acetate).
    Zhang F; McGinity JW
    Drug Dev Ind Pharm; 2000 Sep; 26(9):931-42. PubMed ID: 10914317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic-Based Chemometric Models for Quantifying Low Levels of Solid-State Transitions in Extended Release Theophylline Formulations.
    Korang-Yeboah M; Rahman Z; Shah DA; Khan MA
    J Pharm Sci; 2016 Jan; 105(1):97-105. PubMed ID: 26852844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature-increase rate on drug release characteristics of dextran microspheres prepared by emulsion solvent evaporation process.
    Miyazaki Y; Onuki Y; Yakou S; Takayama K
    Int J Pharm; 2006 Nov; 324(2):144-51. PubMed ID: 16828994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image analysis of lutrol/gelucire/olanzapine microspheres prepared by ultrasound-assisted spray congealing.
    Cavallari C; Gonzalez-Rodriguez M; Tarterini F; Fini A
    Eur J Pharm Biopharm; 2014 Nov; 88(3):909-18. PubMed ID: 25218318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel interpenetrating network chitosan-poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine.
    Agnihotri SA; Aminabhavi TM
    Int J Pharm; 2006 Nov; 324(2):103-15. PubMed ID: 16824710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.