BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 20815084)

  • 1. Phosphoglycerate mutase knock-out mutant Saccharomyces cerevisiae: physiological investigation and transcriptome analysis.
    Papini M; Nookaew I; Scalcinati G; Siewers V; Nielsen J
    Biotechnol J; 2010 Oct; 5(10):1016-27. PubMed ID: 20815084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of two yeast genes encoding putative isoenzymes of phosphoglycerate mutase.
    Heinisch JJ; Müller S; Schlüter E; Jacoby J; Rodicio R
    Yeast; 1998 Feb; 14(3):203-13. PubMed ID: 9544241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae.
    Roberts GG; Hudson AP
    Yeast; 2009 Feb; 26(2):95-110. PubMed ID: 19235764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae.
    Gamo FJ; Lafuente MJ; Gancedo C
    J Bacteriol; 1994 Dec; 176(24):7423-9. PubMed ID: 8002563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae.
    Sasaki H; Uemura H
    Yeast; 2005 Jan; 22(2):111-27. PubMed ID: 15645478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome profiling of Saccharomyces cerevisiae during a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic and structural remodeling.
    Roberts GG; Hudson AP
    Mol Genet Genomics; 2006 Aug; 276(2):170-86. PubMed ID: 16741729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae.
    Haurie V; Perrot M; Mini T; Jenö P; Sagliocco F; Boucherie H
    J Biol Chem; 2001 Jan; 276(1):76-85. PubMed ID: 11024040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic phenotypes of Saccharomyces cerevisiae mutants with altered trehalose 6-phosphate dynamics.
    Walther T; Mtimet N; Alkim C; Vax A; Loret MO; Ullah A; Gancedo C; Smits GJ; François JM
    Biochem J; 2013 Sep; 454(2):227-37. PubMed ID: 23763276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations of the glucose metabolism in a triose phosphate isomerase-negative Saccharomyces cerevisiae mutant.
    Compagno C; Brambilla L; Capitanio D; Boschi F; Ranzi BM; Porro D
    Yeast; 2001 May; 18(7):663-70. PubMed ID: 11329176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis.
    Zhang J; Olsson L; Nielsen J
    Mol Microbiol; 2010 Jul; 77(2):371-83. PubMed ID: 20545859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significant quantities of the glycolytic enzyme phosphoglycerate mutase are present in the cell wall of yeast Saccharomyces cerevisiae.
    Motshwene P; Brandt W; Lindsey G
    Biochem J; 2003 Jan; 369(Pt 2):357-62. PubMed ID: 12238949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ETP1/YHL010c is a novel gene needed for the adaptation of Saccharomyces cerevisiae to ethanol.
    Snowdon C; Schierholtz R; Poliszczuk P; Hughes S; van der Merwe G
    FEMS Yeast Res; 2009 May; 9(3):372-80. PubMed ID: 19416103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The yeast Mcm1 protein is regulated posttranscriptionally by the flux of glycolysis.
    Chen Y; Tye BK
    Mol Cell Biol; 1995 Aug; 15(8):4631-9. PubMed ID: 7623855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genetic and biochemical analysis of the role of gluconeogenesis in sporulation of Saccharomyces cerevisiae.
    Dickinson JR; Williams AS
    J Gen Microbiol; 1986 Sep; 132(9):2605-10. PubMed ID: 3540206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaplerotic reactions active during growth of Saccharomyces cerevisiae on glycerol.
    Xiberras J; Klein M; Prosch C; Malubhoy Z; Nevoigt E
    FEMS Yeast Res; 2020 Feb; 20(1):. PubMed ID: 31821485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.