These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20815229)

  • 1. [Progress of research on the microbial fuel cells in the application of environment pollution treatment--a review].
    Yang Y; Sun G; Xu M
    Wei Sheng Wu Xue Bao; 2010 Jul; 50(7):847-52. PubMed ID: 20815229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells.
    Huang L; Regan JM; Quan X
    Bioresour Technol; 2011 Jan; 102(1):316-23. PubMed ID: 20634062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research Progress in Technology of Using Soil Micro-organisms to Generate Electricity and Its Potential Applications].
    Deng H; Xue HJ; Jiang YB; Zhong WH
    Huan Jing Ke Xue; 2015 Oct; 36(10):3926-34. PubMed ID: 26841633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrilotriacetic acid degradation under microbial fuel cell environment.
    Jang JK; Chang IS; Moon H; Kang KH; Kim BH
    Biotechnol Bioeng; 2006 Nov; 95(4):772-4. PubMed ID: 16958138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy.
    Du Z; Li H; Gu T
    Biotechnol Adv; 2007; 25(5):464-82. PubMed ID: 17582720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perspective of harnessing energy from landfill leachate via microbial fuel cells: novel biofuels and electrogenic physiologies.
    Wu D; Wang T; Huang X; Dolfing J; Xie B
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):7827-36. PubMed ID: 26239072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined effects of enrichment procedure and non-fermentable or fermentable co-substrate on performance and bacterial community for pentachlorophenol degradation in microbial fuel cells.
    Wang S; Huang L; Gan L; Quan X; Li N; Chen G; Lu L; Xing D; Yang F
    Bioresour Technol; 2012 Sep; 120():120-6. PubMed ID: 22784962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Recenct progress in electricigens and microbial fuel cell].
    Hong YG; Guo J; Sun GP
    Wei Sheng Wu Xue Bao; 2007 Feb; 47(1):173-7. PubMed ID: 17436648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell.
    Huang L; Chen J; Quan X; Yang F
    Bioprocess Biosyst Eng; 2010 Oct; 33(8):937-45. PubMed ID: 20217142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial fuel cell application in landfill leachate treatment.
    Puig S; Serra M; Coma M; Cabré M; Dolors Balaguer M; Colprim J
    J Hazard Mater; 2011 Jan; 185(2-3):763-7. PubMed ID: 20970254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimizing losses in bio-electrochemical systems: the road to applications.
    Clauwaert P; Aelterman P; Pham TH; De Schamphelaire L; Carballa M; Rabaey K; Verstraete W
    Appl Microbiol Biotechnol; 2008 Jul; 79(6):901-13. PubMed ID: 18506439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Urine utilisation by microbial fuel cells; energy fuel for the future.
    Ieropoulos I; Greenman J; Melhuish C
    Phys Chem Chem Phys; 2012 Jan; 14(1):94-8. PubMed ID: 22071787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells.
    Juang DF; Yang PC; Chou HY; Chiu LJ
    Biotechnol Lett; 2011 Nov; 33(11):2147-60. PubMed ID: 21750995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress and continuing challenges in bio-fuel cells. Part II: Microbial.
    Osman MH; Shah AA; Walsh FC
    Biosens Bioelectron; 2010 Nov; 26(3):953-63. PubMed ID: 20864328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniaturizing microbial fuel cells.
    Qian F; Morse DE
    Trends Biotechnol; 2011 Feb; 29(2):62-9. PubMed ID: 21075467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of algal organic matter using microbial fuel cells and its association with trihalomethane precursor removal.
    Wang H; Liu D; Lu L; Zhao Z; Xu Y; Cui F
    Bioresour Technol; 2012 Jul; 116():80-5. PubMed ID: 22609659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells.
    Jia YH; Tran HT; Kim DH; Oh SJ; Park DH; Zhang RH; Ahn DH
    Bioprocess Biosyst Eng; 2008 Jun; 31(4):315-21. PubMed ID: 17909860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electricity-producing bacterial communities in microbial fuel cells.
    Logan BE; Regan JM
    Trends Microbiol; 2006 Dec; 14(12):512-8. PubMed ID: 17049240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in electrodes for microbial fuel cells.
    Wei J; Liang P; Huang X
    Bioresour Technol; 2011 Oct; 102(20):9335-44. PubMed ID: 21855328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.
    Logan BE; Rabaey K
    Science; 2012 Aug; 337(6095):686-90. PubMed ID: 22879507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.