These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20815407)

  • 1. Entropy-driven formation of binary semiconductor-nanocrystal superlattices.
    Evers WH; De Nijs B; Filion L; Castillo S; Dijkstra M; Vanmaekelbergh D
    Nano Lett; 2010 Oct; 10(10):4235-41. PubMed ID: 20815407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bistable magnetoresistance switching in exchange-coupled CoFe₂O₄--Fe₃O₄ binary nanocrystal superlattices by self-assembly and thermal annealing.
    Chen J; Ye X; Oh SJ; Kikkawa JM; Kagan CR; Murray CB
    ACS Nano; 2013 Feb; 7(2):1478-86. PubMed ID: 23273052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices.
    Wei J; Schaeffer N; Pileni MP
    J Am Chem Soc; 2015 Nov; 137(46):14773-84. PubMed ID: 26549642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymorphism in AB(13) nanoparticle superlattices: an example of semiconductor-metal metamaterials.
    Shevchenko EV; Talapin DV; O'brien S; Murray CB
    J Am Chem Soc; 2005 Jun; 127(24):8741-7. PubMed ID: 15954780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond entropy: magnetic forces induce formation of quasicrystalline structure in binary nanocrystal superlattices.
    Yang Z; Wei J; Bonville P; Pileni MP
    J Am Chem Soc; 2015 Apr; 137(13):4487-93. PubMed ID: 25785302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembly of Colloidal Nanocrystals into 3D Binary Mesocrystals.
    Ni B; Gonzalez-Rubio G; Cölfen H
    Acc Chem Res; 2022 Jun; 55(12):1599-1608. PubMed ID: 35679581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Mapping of Binary Nanocrystal Superlattices: The Role of Topology in Phase Selection.
    Coropceanu I; Boles MA; Talapin DV
    J Am Chem Soc; 2019 Apr; 141(14):5728-5740. PubMed ID: 30868880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots.
    Redl FX; Cho KS; Murray CB; O'Brien S
    Nature; 2003 Jun; 423(6943):968-71. PubMed ID: 12827196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic electron crystallographic studies of self-assembled binary nanocrystal superlattices.
    Chen J; Ye X; Murray CB
    ACS Nano; 2010 Apr; 4(4):2374-81. PubMed ID: 20302347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-temperature crystallization of nanocrystals into three-dimensional superlattices.
    Wu L; Willis JJ; McKay IS; Diroll BT; Qin J; Cargnello M; Tassone CJ
    Nature; 2017 Aug; 548(7666):197-201. PubMed ID: 28759888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binary superlattices from colloidal nanocrystals and giant polyoxometalate clusters.
    Bodnarchuk MI; Erni R; Krumeich F; Kovalenko MV
    Nano Lett; 2013 Apr; 13(4):1699-705. PubMed ID: 23488858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.
    Lim SH; Lee T; Oh Y; Narayanan T; Sung BJ; Choi SM
    Nat Commun; 2017 Aug; 8(1):360. PubMed ID: 28842555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure direction of II-VI semiconductor quantum dot binary nanoparticle superlattices by tuning radius ratio.
    Chen Z; O'Brien S
    ACS Nano; 2008 Jun; 2(6):1219-29. PubMed ID: 19206340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic Assembly of Nanocrystal/Molecular Hierarchical Superlattices Decoding from Tris-Amide Triarylamines Supramolecular Networks.
    Zhang F; Yang F; Gong Y; Wei Y; Yang Y; Wei J; Yang Z; Pileni MP
    Small; 2020 Dec; 16(48):e2005701. PubMed ID: 33169513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2 Te thin films.
    Urban JJ; Talapin DV; Shevchenko EV; Kagan CR; Murray CB
    Nat Mater; 2007 Feb; 6(2):115-21. PubMed ID: 17237786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perovskite-type superlattices from lead halide perovskite nanocubes.
    Cherniukh I; Rainò G; Stöferle T; Burian M; Travesset A; Naumenko D; Amenitsch H; Erni R; Mahrt RF; Bodnarchuk MI; Kovalenko MV
    Nature; 2021 May; 593(7860):535-542. PubMed ID: 34040208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of charge asymmetry and charge screening on structure of superlattices formed by oppositely charged colloidal particles.
    Pavaskar G; Sharma S; Punnathanam SN
    J Chem Phys; 2012 Apr; 136(13):134506. PubMed ID: 22482571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials.
    Boles MA; Engel M; Talapin DV
    Chem Rev; 2016 Sep; 116(18):11220-89. PubMed ID: 27552640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.