These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 20815430)

  • 1. Ocean acidification and its impact on ocean noise: phenomenology and analysis.
    Reeder DB; Chiu CS
    J Acoust Soc Am; 2010 Sep; 128(3):EL137-43. PubMed ID: 20815430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational assessment of the sensitivity of ambient noise level to ocean acidification.
    Joseph JE; Chiu CS
    J Acoust Soc Am; 2010 Sep; 128(3):EL144-9. PubMed ID: 20815431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling deep ocean shipping noise in varying acidity conditions.
    Udovydchenkov IA; Duda TF; Doney SC; Lima ID
    J Acoust Soc Am; 2010 Sep; 128(3):EL130-6. PubMed ID: 20815429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wind-generated ambient noise in a topographically isolated basin: a pre-industrial era proxy.
    Reeder DB; Sheffield ES; Mach SM
    J Acoust Soc Am; 2011 Jan; 129(1):64-73. PubMed ID: 21302988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic signal and noise changes in the Beaufort Sea Pacific Water duct under anticipated future acidification of Arctic Ocean waters.
    Duda TF
    J Acoust Soc Am; 2017 Oct; 142(4):1926. PubMed ID: 29092580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.
    Ardhuin F; Lavanant T; Obrebski M; Marié L; Royer JY; d'Eu JF; Howe BM; Lukas R; Aucan J
    J Acoust Soc Am; 2013 Oct; 134(4):3242-59. PubMed ID: 24116520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inversions of statistical parameters of an acoustic signal in range-dependent environments with applications in ocean acoustic tomography.
    Taroudakis MI; Smaragdakis C
    J Acoust Soc Am; 2013 Oct; 134(4):2814-22. PubMed ID: 24116419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of source depth on coherent underwater acoustic communications.
    Song A; Badiey M; Song HC; Hodgkiss WS
    J Acoust Soc Am; 2010 Aug; 128(2):555-8. PubMed ID: 20707422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of wind-driven ambient noise in a shallow water environment with a sandy seabed.
    Knobles DP; Joshi SM; Gaul RD; Graber HC; Williams NJ
    J Acoust Soc Am; 2008 Sep; 124(3):EL157-62. PubMed ID: 19045559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive passive fathometer processing.
    Siderius M; Song H; Gerstoft P; Hodgkiss WS; Hursky P; Harrison C
    J Acoust Soc Am; 2010 Apr; 127(4):2193-200. PubMed ID: 20370000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green's function approximation from cross-correlations of 20-100 Hz noise during a tropical storm.
    Brooks LA; Gerstoft P
    J Acoust Soc Am; 2009 Feb; 125(2):723-34. PubMed ID: 19206850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust passive range estimation using the waveguide invariant.
    Cockrell KL; Schmidt H
    J Acoust Soc Am; 2010 May; 127(5):2780-9. PubMed ID: 21117727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracting the local Green's function on a horizontal array from ambient ocean noise.
    Fried SE; Kuperman WA; Sabra KG; Roux P
    J Acoust Soc Am; 2008 Oct; 124(4):EL183-8. PubMed ID: 19062784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of raylike arrivals in a shallow-water waveguide.
    Roux P; Cornuelle BD; Kuperman WA; Hodgkiss WS
    J Acoust Soc Am; 2008 Dec; 124(6):3430-9. PubMed ID: 19206772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluctuating arrivals of short-range acoustic data.
    Park C; Seong W; Gerstoft P; Hodgkiss WS
    J Acoust Soc Am; 2011 Jan; 129(1):98-103. PubMed ID: 21302991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth-based signal separation with vertical line arrays in the deep ocean.
    McCargar R; Zurk LM
    J Acoust Soc Am; 2013 Apr; 133(4):EL320-5. PubMed ID: 23556698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of high-frequency wind-driven ambient noise in shallow brackish water.
    Poikonen A
    J Acoust Soc Am; 2011 Apr; 129(4):EL128-34. PubMed ID: 21476619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trouble-shooting deployment and recovery options for various stationary passive acoustic monitoring devices in both shallow- and deep-water applications.
    Dudzinski KM; Brown SJ; Lammers M; Lucke K; Mann DA; Simard P; Wall CC; Rasmussen MH; Magnúsdóttir EE; Tougaard J; Eriksen N
    J Acoust Soc Am; 2011 Jan; 129(1):436-48. PubMed ID: 21303023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the contribution of climate change on North Atlantic underwater sound propagation.
    Possenti L; Reichart GJ; de Nooijer L; Lam FP; de Jong C; Colin M; Binnerts B; Boot A; von der Heydt A
    PeerJ; 2023; 11():e16208. PubMed ID: 37842042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low probability of detection underwater acoustic communications using direct-sequence spread spectrum.
    Yang TC; Yang WB
    J Acoust Soc Am; 2008 Dec; 124(6):3632-47. PubMed ID: 19206792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.