BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20815635)

  • 1. A biomechanical investigation of ankle injury under excessive external foot rotation in the human cadaver.
    Wei F; Villwock MR; Meyer EG; Powell JW; Haut RC
    J Biomech Eng; 2010 Sep; 132(9):091001. PubMed ID: 20815635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation.
    Wei F; Hunley SC; Powell JW; Haut RC
    Ann Biomed Eng; 2011 Feb; 39(2):756-65. PubMed ID: 21170679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plantar flexion injuries of the ankle. An experimental study.
    Wilson FC; Phillips HO; Gilbert JA
    Clin Orthop Relat Res; 1994 Sep; (306):97-102. PubMed ID: 8070216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional analysis of ankle instability after tibiofibular syndesmosis injuries: a biomechanical experimental study.
    Teramoto A; Kura H; Uchiyama E; Suzuki D; Yamashita T
    Am J Sports Med; 2008 Feb; 36(2):348-52. PubMed ID: 17940143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torsional strength of the ankle in vitro. The supination-external-rotation injury.
    Markolf KL; Schmalzried TP; Ferkel RD
    Clin Orthop Relat Res; 1989 Sep; (246):266-72. PubMed ID: 2504526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ankle fractures. The Lauge-Hansen classification revisited.
    Michelson J; Solocoff D; Waldman B; Kendell K; Ahn U
    Clin Orthop Relat Res; 1997 Dec; (345):198-205. PubMed ID: 9418641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion of the ankle in a simulated supination-external rotation fracture model.
    Michelsen JD; Ahn UM; Helgemo SL
    J Bone Joint Surg Am; 1996 Jul; 78(7):1024-31. PubMed ID: 8698719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical stability of the subtalar joint after lateral ligament sectioning and ankle brace application: a biomechanical experimental study.
    Kamiya T; Kura H; Suzuki D; Uchiyama E; Fujimiya M; Yamashita T
    Am J Sports Med; 2009 Dec; 37(12):2451-8. PubMed ID: 19654428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulated lateral ankle ligamentous injury. Change in ankle stability.
    Hollis JM; Blasier RD; Flahiff CM
    Am J Sports Med; 1995; 23(6):672-7. PubMed ID: 8600732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of modified Broström and Evans procedures in simulated lateral ankle injury.
    Fujii T; Kitaoka HB; Watanabe K; Luo ZP; An KN
    Med Sci Sports Exerc; 2006 Jun; 38(6):1025-31. PubMed ID: 16775540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimentally produced ankle fractures in autopsy specimens.
    Stiehl JB; Skrade DA; Johnson RP
    Clin Orthop Relat Res; 1992 Dec; (285):244-9. PubMed ID: 1446445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unlocking the talus by eversion limits medial ankle injury risk during external rotation.
    Button KD; Wei F; Haut RC
    J Biomech; 2015 Oct; 48(13):3724-7. PubMed ID: 26315917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical comparison of reconstruction techniques in simulated lateral ankle ligament injury.
    Hollis JM; Blasier RD; Flahiff CM; Hofmann OE
    Am J Sports Med; 1995; 23(6):678-82. PubMed ID: 8600733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Calcaneofibular Ligament Injury in Ankle Instability: Implications for Surgical Management.
    Hunt KJ; Pereira H; Kelley J; Anderson N; Fuld R; Baldini T; Kumparatana P; D'Hooghe P
    Am J Sports Med; 2019 Feb; 47(2):431-437. PubMed ID: 30571138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eversion during external rotation of the human cadaver foot produces high ankle sprains.
    Wei F; Post JM; Braman JE; Meyer EG; Powell JW; Haut RC
    J Orthop Res; 2012 Sep; 30(9):1423-9. PubMed ID: 22328337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ligamentous injury on ankle and subtalar joints: a kinematic study.
    Parlasca R; Shoji H; D'Ambrosia RD
    Clin Orthop Relat Res; 1979 May; (140):266-72. PubMed ID: 477082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the flexibility characteristics of the ankle complex due to damage to the lateral collateral ligaments: an in vitro and in vivo study.
    Lapointe SJ; Siegler S; Hillstrom H; Nobilini RR; Mlodzienski A; Techner L
    J Orthop Res; 1997 May; 15(3):331-41. PubMed ID: 9246078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of the number of cortices of screw purchase and ankle position in Weber C ankle fracture fixation.
    Nousiainen MT; McConnell AJ; Zdero R; McKee MD; Bhandari M; Schemitsch EH
    J Orthop Trauma; 2008 Aug; 22(7):473-8. PubMed ID: 18670288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of isolated Weber B fibular fractures on the tibiotalar contact area.
    Harris J; Fallat L
    J Foot Ankle Surg; 2004; 43(1):3-9. PubMed ID: 14752757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the interosseous talocalcaneal ligament injury on stability of the ankle-subtalar joint complex--a cadaveric experimental study.
    Tochigi Y; Takahashi K; Yamagata M; Tamaki T
    Foot Ankle Int; 2000 Jun; 21(6):486-91. PubMed ID: 10884108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.