These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 20815638)

  • 1. Effects of anterior shear displacement rate on the structural properties of the porcine cervical spine.
    Gallagher KM; Howarth SJ; Callaghan JP
    J Biomech Eng; 2010 Sep; 132(9):091004. PubMed ID: 20815638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive force magnitude and intervertebral joint flexion/extension angle influence shear failure force magnitude in the porcine cervical spine.
    Howarth SJ; Callaghan JP
    J Biomech; 2012 Feb; 45(3):484-90. PubMed ID: 22196209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties and failure mechanics of the spine under posterior shear load: observations from a porcine model.
    Yingling VR; McGill SM
    J Spinal Disord; 1999 Dec; 12(6):501-8. PubMed ID: 10598993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frozen storage increases the ultimate compressive load of porcine vertebrae.
    Callaghan JP; McGill SM
    J Orthop Res; 1995 Sep; 13(5):809-12. PubMed ID: 7472761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postural influence on the neutral zone of the porcine cervical spine under anterior-posterior shear load.
    Howarth SJ; Gallagher KM; Callaghan JP
    Med Eng Phys; 2013 Jul; 35(7):910-8. PubMed ID: 22989527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The porcine cervical spine as a model of the human lumbar spine: an anatomical, geometric, and functional comparison.
    Yingling VR; Callaghan JP; McGill SM
    J Spinal Disord; 1999 Oct; 12(5):415-23. PubMed ID: 10549707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of two-level total disc replacement on cervical spine kinematics.
    Phillips FM; Tzermiadianos MN; Voronov LI; Havey RM; Carandang G; Dooris A; Patwardhan AG
    Spine (Phila Pa 1976); 2009 Oct; 34(22):E794-9. PubMed ID: 19829242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of displacement rate on the tensile mechanics of pediatric cervical functional spinal units.
    Nuckley DJ; Hertsted SM; Eck MP; Ching RP
    J Biomech; 2005 Nov; 38(11):2266-75. PubMed ID: 16154414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical evaluation of surgical constructs for stabilization of cervical teardrop fractures.
    Ianuzzi A; Zambrano I; Tataria J; Ameerally A; Agulnick M; Goodwin JS; Stephen M; Khalsa PS
    Spine J; 2006; 6(5):514-23. PubMed ID: 16934720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical effect of anterior cervical spine fusion on adjacent segments.
    Maiman DJ; Kumaresan S; Yoganandan N; Pintar FA
    Biomed Mater Eng; 1999; 9(1):27-38. PubMed ID: 10436851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Load sharing and stabilization effects of anterior cervical devices.
    Cheng BC; Burns P; Pirris S; Welch WC
    J Spinal Disord Tech; 2009 Dec; 22(8):571-7. PubMed ID: 19956031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion changes in adjacent segments due to moderate and severe degeneration in C5-C6 disc: a poroelastic C3-T1 finite element model study.
    Hussain M; Natarajan RN; An HS; Andersson GB
    Spine (Phila Pa 1976); 2010 Apr; 35(9):939-47. PubMed ID: 20375779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model.
    Drake JD; Aultman CD; McGill SM; Callaghan JP
    Clin Biomech (Bristol, Avon); 2005 Dec; 20(10):1038-45. PubMed ID: 16098646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards establishing an occupational threshold for cumulative shear force in the vertebral joint - an in vitro evaluation of a risk factor for spondylolytic fractures using porcine specimens.
    Howarth SJ; Callaghan JP
    Clin Biomech (Bristol, Avon); 2013 Mar; 28(3):246-54. PubMed ID: 23360894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical evaluation of hydroxyapatite intervertebral graft and anterior cervical plating in a porcine cadaveric model.
    Takahashi T; Tominaga T; Yoshimoto T; Koshu K; Yokobori AT; Aizawa Y
    Biomed Mater Eng; 1997; 7(2):121-7. PubMed ID: 9262825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion compensation associated with single-level cervical fusion: where does the lost motion go?
    Schwab JS; Diangelo DJ; Foley KT
    Spine (Phila Pa 1976); 2006 Oct; 31(21):2439-48. PubMed ID: 17023853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Failure properties of cervical spinal ligaments under fast strain rate deformations.
    Bass CR; Lucas SR; Salzar RS; Oyen ML; Planchak C; Shender BS; Paskoff G
    Spine (Phila Pa 1976); 2007 Jan; 32(1):E7-13. PubMed ID: 17202883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study.
    Lin CY; Kang H; Rouleau JP; Hollister SJ; Marca FL
    Spine (Phila Pa 1976); 2009 Jul; 34(15):1554-60. PubMed ID: 19564765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation.
    Kumaresan S; Yoganandan N; Pintar FA; Maiman DJ; Goel VK
    J Orthop Res; 2001 Sep; 19(5):977-84. PubMed ID: 11562150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of dynamic flexion in spine injury is altered by increasing dynamic load magnitude.
    Parkinson RJ; Callaghan JP
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):148-54. PubMed ID: 19121880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.