These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 20815640)

  • 1. A neurogenetic approach to a multiobjective design optimization of spinal pedicle screws.
    Chao CK; Lin J; Putra ST; Hsu CC
    J Biomech Eng; 2010 Sep; 132(9):091006. PubMed ID: 20815640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiobjective optimization of tibial locking screw design using a genetic algorithm: Evaluation of mechanical performance.
    Hsu CC; Chao CK; Wang JL; Lin J
    J Orthop Res; 2006 May; 24(5):908-16. PubMed ID: 16528743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses.
    Chao CK; Hsu CC; Wang JL; Lin J
    J Spinal Disord Tech; 2008 Apr; 21(2):130-8. PubMed ID: 18391719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength.
    Burval DJ; McLain RF; Milks R; Inceoglu S
    Spine (Phila Pa 1976); 2007 May; 32(10):1077-83. PubMed ID: 17471088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses.
    Hsu CC; Chao CK; Wang JL; Hou SM; Tsai YT; Lin J
    J Orthop Res; 2005 Jul; 23(4):788-94. PubMed ID: 16022991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pedicle screw fixation strength: pullout versus insertional torque.
    Inceoglu S; Ferrara L; McLain RF
    Spine J; 2004; 4(5):513-8. PubMed ID: 15363421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of multiple linear regression and artificial neural network in developing the objective functions of the orthopaedic screws.
    Hsu CC; Lin J; Chao CK
    Comput Methods Programs Biomed; 2011 Dec; 104(3):341-8. PubMed ID: 21134702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiobjective optimization design of spinal pedicle screws using neural networks and genetic algorithm: mathematical models and mechanical validation.
    Amaritsakul Y; Chao CK; Lin J
    Comput Math Methods Med; 2013; 2013():462875. PubMed ID: 23983810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical bone trajectory for lumbar pedicle screws.
    Santoni BG; Hynes RA; McGilvray KC; Rodriguez-Canessa G; Lyons AS; Henson MA; Womack WJ; Puttlitz CM
    Spine J; 2009 May; 9(5):366-73. PubMed ID: 18790684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing bending strength of tibial locking screws: mechanical tests and finite element analyses.
    Chao CK; Hsu CC; Wang JL; Lin J
    Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):59-66. PubMed ID: 16959388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the bending performance of solid and cannulated spinal pedicle screws using finite element analyses and biomechanical tests.
    Shih KS; Hsu CC; Hou SM; Yu SC; Liaw CK
    Med Eng Phys; 2015 Sep; 37(9):879-84. PubMed ID: 26208430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes.
    Pfeiffer FM; Abernathie DL; Smith DE
    Spine (Phila Pa 1976); 2006 Nov; 31(23):E867-70. PubMed ID: 17077722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths.
    Johnston TL; Karaikovic EE; Lautenschlager EP; Marcu D
    Spine J; 2006; 6(6):667-72. PubMed ID: 17088197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical comparison of costotransverse process screw fixation and pedicle screw fixation of the upper thoracic spine.
    Little AS; Brasiliense LB; Lazaro BC; Reyes PM; Dickman CA; Crawford NR
    Neurosurgery; 2010 Mar; 66(3 Suppl Operative):178-82; discussion 182. PubMed ID: 20173568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pedicle screw augmentation with polyethylene tape: a biomechanical study in the osteoporotic thoracolumbar spine.
    Hamasaki T; Tanaka N; Kim J; Okada M; Ochi M; Hutton WC
    J Spinal Disord Tech; 2010 Apr; 23(2):127-32. PubMed ID: 20051920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lumbar pedicle screw salvage: pullout testing of three different pedicle screw designs.
    McLain RF; Fry MF; Moseley TA; Sharkey NA
    J Spinal Disord; 1995 Feb; 8(1):62-8. PubMed ID: 7711371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical study of pedicle screw fixation in severely osteoporotic bone.
    Cook SD; Salkeld SL; Stanley T; Faciane A; Miller SD
    Spine J; 2004; 4(4):402-8. PubMed ID: 15246300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of the insertion technique on the pullout force of pedicle screws: an experimental study.
    Chatzistergos PE; Sapkas G; Kourkoulis SK
    Spine (Phila Pa 1976); 2010 Apr; 35(9):E332-7. PubMed ID: 20150834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axial cyclic behavior of the bone-screw interface.
    Inceoğlu S; Ehlert M; Akbay A; McLain RF
    Med Eng Phys; 2006 Nov; 28(9):888-93. PubMed ID: 16458568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical evaluation of bending strength of spinal pedicle screws, including cylindrical, conical, dual core and double dual core designs using numerical simulations and mechanical tests.
    Amaritsakul Y; Chao CK; Lin J
    Med Eng Phys; 2014 Sep; 36(9):1218-23. PubMed ID: 25060212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.