BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20815644)

  • 1. An examination of the influence of strain rate on subfailure mechanical properties of the annulus fibrosus.
    Gregory DE; Callaghan JP
    J Biomech Eng; 2010 Sep; 132(9):091010. PubMed ID: 20815644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single lamellar mechanics of the human lumbar anulus fibrosus.
    Holzapfel GA; Schulze-Bauer CA; Feigl G; Regitnig P
    Biomech Model Mechanobiol; 2005 Mar; 3(3):125-40. PubMed ID: 15778871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model.
    Guerin HL; Elliott DM
    J Orthop Res; 2007 Apr; 25(4):508-16. PubMed ID: 17149747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability.
    Périé D; Korda D; Iatridis JC
    J Biomech; 2005 Nov; 38(11):2164-71. PubMed ID: 16154403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycation increases human annulus fibrosus stiffness in both experimental measurements and theoretical predictions.
    Wagner DR; Reiser KM; Lotz JC
    J Biomech; 2006; 39(6):1021-9. PubMed ID: 15878594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radial tensile properties of the lumbar annulus fibrosus are site and degeneration dependent.
    Fujita Y; Duncan NA; Lotz JC
    J Orthop Res; 1997 Nov; 15(6):814-9. PubMed ID: 9497805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of strain rate on tensile properties of sheep disc anulus fibrosus.
    Kasra M; Parnianpour M; Shirazi-Adl A; Wang JL; Grynpas MD
    Technol Health Care; 2004; 12(4):333-42. PubMed ID: 15502284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear mechanical properties of human lumbar annulus fibrosus.
    Iatridis JC; Kumar S; Foster RJ; Weidenbaum M; Mow VC
    J Orthop Res; 1999 Sep; 17(5):732-7. PubMed ID: 10569484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load.
    Guerin HA; Elliott DM
    J Biomech; 2006; 39(8):1410-8. PubMed ID: 15950233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs.
    Chuang SY; Odono RM; Hedman TP
    Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):14-20. PubMed ID: 17005305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The micromechanical role of the annulus fibrosus components under physiological loading of the lumbar spine.
    Ayturk UM; Garcia JJ; Puttlitz CM
    J Biomech Eng; 2010 Jun; 132(6):061007. PubMed ID: 20887032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The stress and strain states of the posterior annulus under flexion.
    Hollingsworth NT; Wagner DR
    Spine (Phila Pa 1976); 2012 Aug; 37(18):E1134-9. PubMed ID: 22543250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain transfer in the annulus fibrosus under applied flexion.
    Desrochers J; Duncan NA
    J Biomech; 2010 Aug; 43(11):2141-8. PubMed ID: 20478561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic stresses on anisotropic annulus fibrosus of lumbar disk under compression, rotation and flexion in manual treatment.
    Chaudhry H; Ji Z; Shenoy N; Findley T
    J Bodyw Mov Ther; 2009 Apr; 13(2):182-91. PubMed ID: 19329054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of uniaxial and biaxial mechanical properties of the annulus fibrosus: a porcine model.
    Gregory DE; Callaghan JP
    J Biomech Eng; 2011 Feb; 133(2):024503. PubMed ID: 21280886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads.
    Little JP; Pearcy MJ; Tevelen G; Evans JH; Pettet G; Adam CJ
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):146-57. PubMed ID: 20129414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus.
    Wagner DR; Lotz JC
    J Orthop Res; 2004 Jul; 22(4):901-9. PubMed ID: 15183453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cyclic dynamic tensile strain on previously compressed inner annulus fibrosus and nucleus pulposus cells of human intervertebral disc-an in vitro study.
    Hee HT; Zhang J; Wong HK
    J Orthop Res; 2010 Apr; 28(4):503-9. PubMed ID: 19810104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.