BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20815645)

  • 1. Numerical modeling of stress in stenotic arteries with microcalcifications: a micromechanical approximation.
    Wenk JF; Papadopoulos P; Zohdi TI
    J Biomech Eng; 2010 Sep; 132(9):091011. PubMed ID: 20815645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical modeling of stress in stenotic arteries with microcalcifications: a parameter sensitivity study.
    Wenk JF
    J Biomech Eng; 2011 Jan; 133(1):014503. PubMed ID: 21186905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does microcalcification increase the risk of rupture?
    Cilla M; Monterde D; Peña E; Martínez MÁ
    Proc Inst Mech Eng H; 2013 May; 227(5):588-99. PubMed ID: 23637269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling.
    Bluestein D; Alemu Y; Avrahami I; Gharib M; Dumont K; Ricotta JJ; Einav S
    J Biomech; 2008; 41(5):1111-8. PubMed ID: 18258240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps.
    Vengrenyuk Y; Cardoso L; Weinbaum S
    Mol Cell Biomech; 2008 Mar; 5(1):37-47. PubMed ID: 18524245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example.
    Kiousis DE; Rubinigg SF; Auer M; Holzapfel GA
    J Biomech Eng; 2009 Dec; 131(12):121002. PubMed ID: 20524725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques.
    Gao H; Long Q
    J Biomech; 2008 Oct; 41(14):3053-9. PubMed ID: 18786671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational stress analysis of atherosclerotic plaques in ApoE knockout mice.
    Vengrenyuk Y; Kaplan TJ; Cardoso L; Randolph GJ; Weinbaum S
    Ann Biomed Eng; 2010 Mar; 38(3):738-47. PubMed ID: 20336835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models.
    Kock SA; Nygaard JV; Eldrup N; Fründ ET; Klaerke A; Paaske WP; Falk E; Yong Kim W
    J Biomech; 2008; 41(8):1651-8. PubMed ID: 18485351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model.
    Wong KK; Thavornpattanapong P; Cheung SC; Sun Z; Tu J
    BMC Cardiovasc Disord; 2012 Feb; 12():7. PubMed ID: 22336469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear multiscale analysis of coronary atherosclerotic vulnerable plaque artery: fluid-structural modeling with micromechanics.
    Massarwa E; Aronis Z; Eliasy R; Einav S; Haj-Ali R
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1889-1901. PubMed ID: 34191188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How critical is fibrous cap thickness to carotid plaque stability? A flow-plaque interaction model.
    Li ZY; Howarth SP; Tang T; Gillard JH
    Stroke; 2006 May; 37(5):1195-9. PubMed ID: 16574926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanics of atherosclerotic plaque rupture by inclusion/matrix interfacial decohesion.
    Nguyen CM; Levy AJ
    J Biomech; 2010 Oct; 43(14):2702-8. PubMed ID: 20723900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carotid atherosclerosis. Immunocytochemical analysis of the vascular and cellular composition in endarterectomies.
    Milei J; Parodi JC; Fernandez Alonso G; Barone A; Beigelman R; Ferreira LM; Arrigoni G; Matturri L
    Cardiologia; 1996 Jun; 41(6):535-42. PubMed ID: 8766416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does calcium deposition play a role in the stability of atheroma? Location may be the key.
    Li ZY; Howarth S; Tang T; Graves M; U-King-Im J; Gillard JH
    Cerebrovasc Dis; 2007; 24(5):452-9. PubMed ID: 17878727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI.
    Li ZY; Howarth S; Trivedi RA; U-King-Im JM; Graves MJ; Brown A; Wang L; Gillard JH
    J Biomech; 2006; 39(14):2611-22. PubMed ID: 16256124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cap buckling as a potential mechanism of atherosclerotic plaque vulnerability.
    Abdelali M; Reiter S; Mongrain R; Bertrand M; L'Allier PL; Kritikou EA; Tardif JC
    J Mech Behav Biomed Mater; 2014 Apr; 32():210-224. PubMed ID: 24491969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal structural determinants of atherosclerotic plaque vulnerability: a computational analysis of stress distribution using vessel models and three-dimensional intravascular ultrasound imaging.
    Imoto K; Hiro T; Fujii T; Murashige A; Fukumoto Y; Hashimoto G; Okamura T; Yamada J; Mori K; Matsuzaki M
    J Am Coll Cardiol; 2005 Oct; 46(8):1507-15. PubMed ID: 16226176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability.
    Hoshino T; Chow LA; Hsu JJ; Perlowski AA; Abedin M; Tobis J; Tintut Y; Mal AK; Klug WS; Demer LL
    Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H802-10. PubMed ID: 19542489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular calcification.
    Tintut Y; Huang M; Lu J; Tseng W; Garfinkel A; Demer LL
    J Musculoskelet Neuronal Interact; 2007; 7(4):346. PubMed ID: 18094506
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.