These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20815645)

  • 41. Computed Histological Quantification of Atherosclerotic Plaque Microcalcifications.
    Danial JSH; Murad F; Saez AG; Moawad MR; Urrico GS; Vancheri F; Henein MY
    Angiology; 2020 Nov; 71(10):916-919. PubMed ID: 32633543
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Moderate thickness of lipid core in shoulder region of atherosclerotic plaque determines vulnerable plaque A parametric study.
    Polzer S; Polišenská A; Novák K; Burša J
    Med Eng Phys; 2019 Jul; 69():140-146. PubMed ID: 31160196
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Collapse of diseased arteries with eccentric cross section.
    Aoki T; Ku DN
    J Biomech; 1993 Feb; 26(2):133-42. PubMed ID: 8429056
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A fluid?structure interaction study on the biomechanical behaviour of a curved artery with flexible wall.
    Wang X; Li X
    J Med Eng Technol; 2011 Nov; 35(8):402-9. PubMed ID: 22004005
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microcalcifications increase coronary vulnerable plaque rupture potential: a patient-based micro-CT fluid-structure interaction study.
    Rambhia SH; Liang X; Xenos M; Alemu Y; Maldonado N; Kelly A; Chakraborti S; Weinbaum S; Cardoso L; Einav S; Bluestein D
    Ann Biomed Eng; 2012 Jul; 40(7):1443-54. PubMed ID: 22234864
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The interplay of collagen, macrophages, and microcalcification in atherosclerotic plaque cap rupture mechanics.
    Jansen I; Cahalane R; Hengst R; Akyildiz A; Farrell E; Gijsen F; Aikawa E; van der Heiden K; Wissing T
    Basic Res Cardiol; 2024 Apr; 119(2):193-213. PubMed ID: 38329498
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A numerical parametric study of the mechanical action of pulsatile blood flow onto axisymmetric stenosed arteries.
    Belzacq T; Avril S; Leriche E; Delache A
    Med Eng Phys; 2012 Dec; 34(10):1483-95. PubMed ID: 22464939
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Blood flow patterns in the proximal human coronary arteries: relationship to atherosclerotic plaque occurrence.
    Suo J; Oshinski JN; Giddens DP
    Mol Cell Biomech; 2008 Mar; 5(1):9-18. PubMed ID: 18524242
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expression profiling identifies smooth muscle cell diversity within human intima and plaque fibrous cap: loss of RGS5 distinguishes the cap.
    Adams LD; Geary RL; Li J; Rossini A; Schwartz SM
    Arterioscler Thromb Vasc Biol; 2006 Feb; 26(2):319-25. PubMed ID: 16293795
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries.
    Kelly-Arnold A; Maldonado N; Laudier D; Aikawa E; Cardoso L; Weinbaum S
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10741-6. PubMed ID: 23733926
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional finite element analysis of the shear bond test.
    DeHoff PH; Anusavice KJ; Wang Z
    Dent Mater; 1995 Mar; 11(2):126-31. PubMed ID: 8621033
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of residual stress on peak cap stress in arteries.
    Vandiver R
    Math Biosci Eng; 2014 Oct; 11(5):1199-214. PubMed ID: 25347810
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biomechanical behaviors of curved artery with flexible wall: a numerical study using fluid-structure interaction method.
    Wang X; Li X
    Comput Biol Med; 2011 Nov; 41(11):1014-21. PubMed ID: 21943789
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels.
    Loree HM; Kamm RD; Stringfellow RG; Lee RT
    Circ Res; 1992 Oct; 71(4):850-8. PubMed ID: 1516158
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of fibre architecture and adaptation in diseased carotid bifurcations.
    Creane A; Maher E; Sultan S; Hynes N; Kelly DJ; Lally C
    Biomech Model Mechanobiol; 2011 Dec; 10(6):831-43. PubMed ID: 21161562
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoanalytical analysis of bisphosphonate-driven alterations of microcalcifications using a 3D hydrogel system and in vivo mouse model.
    Ruiz JL; Hutcheson JD; Cardoso L; Bakhshian Nik A; Condado de Abreu A; Pham T; Buffolo F; Busatto S; Federici S; Ridolfi A; Aikawa M; Bertazzo S; Bergese P; Weinbaum S; Aikawa E
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33795519
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap.
    Barrett SR; Sutcliffe MP; Howarth S; Li ZY; Gillard JH
    J Biomech; 2009 Aug; 42(11):1650-5. PubMed ID: 19464014
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changing views of the biomechanics of vulnerable plaque rupture: a review.
    Cardoso L; Weinbaum S
    Ann Biomed Eng; 2014 Feb; 42(2):415-31. PubMed ID: 23842694
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Small entities with large impact: microcalcifications and atherosclerotic plaque vulnerability.
    Hutcheson JD; Maldonado N; Aikawa E
    Curr Opin Lipidol; 2014 Oct; 25(5):327-32. PubMed ID: 25188916
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of material property variability on the mechanical behaviour of carotid atherosclerotic plaques: a 3D fluid-structure interaction analysis.
    Yuan J; Teng Z; Feng J; Zhang Y; Brown AJ; Gillard JH; Jing Z; Lu Q
    Int J Numer Method Biomed Eng; 2015 Aug; 31(8):. PubMed ID: 25940741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.