These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 2081583)
1. Formant frequency structure of the aging male and female vocal tract. Rastatter MP; Jacques RD Folia Phoniatr (Basel); 1990; 42(6):312-9. PubMed ID: 2081583 [No Abstract] [Full Text] [Related]
3. Comparison of pitch perturbation extraction procedures with adult male and female speakers. Deem JF; Manning WH; Knack JV; Matesich JS Folia Phoniatr (Basel); 1991; 43(5):234-45. PubMed ID: 1808040 [No Abstract] [Full Text] [Related]
4. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation. Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565 [TBL] [Abstract][Full Text] [Related]
5. [Evaluation of laryngeal sound generation with FFT analysis of glottic impedance in patients with recurrent nerve paralysis]. Ptok M; Sesterhenn G; Arold R Folia Phoniatr (Basel); 1993; 45(4):182-97. PubMed ID: 8406268 [TBL] [Abstract][Full Text] [Related]
6. Frequency and intensity effects upon temporal and aerodynamic aspects of vocal fold diadochokinesis. Leeper HA; Jones E Percept Mot Skills; 1991 Dec; 73(3 Pt 1):880-2. PubMed ID: 1792136 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the electroglottographic waveform: a primary study to investigate vocal fold functioning. Houben GB; Buekers R; Kingma H Folia Phoniatr (Basel); 1992; 44(6):269-81. PubMed ID: 1286839 [TBL] [Abstract][Full Text] [Related]
8. Formant frequency estimation of high-pitched vowels using weighted linear prediction. Alku P; Pohjalainen J; Vainio M; Laukkanen AM; Story BH J Acoust Soc Am; 2013 Aug; 134(2):1295-313. PubMed ID: 23927127 [TBL] [Abstract][Full Text] [Related]
9. A study of EGG and simultaneous subglottal pressure signals. Ursino F; Pardini L; Panattoni G; Matteucci F; Grosjacques M Folia Phoniatr (Basel); 1991; 43(5):220-5. PubMed ID: 1808038 [No Abstract] [Full Text] [Related]
10. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study. Titze IR; Laukkanen AM Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981 [TBL] [Abstract][Full Text] [Related]
11. High-resolution frequency analysis as applied to the singing voice. Morsomme D; Remacle M; Millet B Folia Phoniatr (Basel); 1993; 45(6):280-7. PubMed ID: 8253452 [TBL] [Abstract][Full Text] [Related]
12. Kalman-based autoregressive moving average modeling and inference for formant and antiformant tracking. Mehta DD; Rudoy D; Wolfe PJ J Acoust Soc Am; 2012 Sep; 132(3):1732-46. PubMed ID: 22978900 [TBL] [Abstract][Full Text] [Related]
13. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract. Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980 [TBL] [Abstract][Full Text] [Related]
14. Formant frequency characteristics of elderly speakers in contextual speech. Rastatter MP; McGuire RA; Kalinowski J; Stuart A Folia Phoniatr Logop; 1997; 49(1):1-8. PubMed ID: 9097490 [TBL] [Abstract][Full Text] [Related]
15. Acoustic analysis of diplophonia: a follow-up report. Terrio L; Schreibweiss-Merin D Percept Mot Skills; 1993 Dec; 77(3 Pt 1):914. PubMed ID: 8284176 [TBL] [Abstract][Full Text] [Related]
16. Comparison of vocal tract formants in singing and nonperiodic phonation. Miller DG; Sulter AM; Schutte HK; Wolf RF J Voice; 1997 Mar; 11(1):1-11. PubMed ID: 9075171 [TBL] [Abstract][Full Text] [Related]
17. Direct measurement of onset and offset phonation threshold pressure in normal subjects. Plant RL; Freed GL; Plant RE J Acoust Soc Am; 2004 Dec; 116(6):3640-6. PubMed ID: 15658714 [TBL] [Abstract][Full Text] [Related]