These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 20816053)

  • 1. Identification of the third Na+ site and the sequence of extracellular binding events in the glutamate transporter.
    Huang Z; Tajkhorshid E
    Biophys J; 2010 Sep; 99(5):1416-25. PubMed ID: 20816053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy simulations of ligand binding to the aspartate transporter Glt(Ph).
    Heinzelmann G; Baştuğ T; Kuyucak S
    Biophys J; 2011 Nov; 101(10):2380-8. PubMed ID: 22098736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Position of the third Na+ site in the aspartate transporter GltPh and the human glutamate transporter, EAAT1.
    Bastug T; Heinzelmann G; Kuyucak S; Salim M; Vandenberg RJ; Ryan RM
    PLoS One; 2012; 7(3):e33058. PubMed ID: 22427946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutralization of the aspartic acid residue Asp-367, but not Asp-454, inhibits binding of Na+ to the glutamate-free form and cycling of the glutamate transporter EAAC1.
    Tao Z; Zhang Z; Grewer C
    J Biol Chem; 2006 Apr; 281(15):10263-72. PubMed ID: 16478724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidation of the Role of a Conserved Methionine in Glutamate Transporters and Its Implication for Force Fields.
    Setiadi J; Kuyucak S
    J Phys Chem B; 2017 Oct; 121(41):9526-9531. PubMed ID: 28945385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations elucidate the mechanism of proton transport in the glutamate transporter EAAT3.
    Heinzelmann G; Kuyucak S
    Biophys J; 2014 Jun; 106(12):2675-83. PubMed ID: 24940785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opposite movement of the external gate of a glutamate transporter homolog upon binding cotransported sodium compared with substrate.
    Focke PJ; Moenne-Loccoz P; Larsson HP
    J Neurosci; 2011 Apr; 31(16):6255-62. PubMed ID: 21508248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct roles of the Na
    Riederer EA; Moënne-Loccoz P; Valiyaveetil FI
    Proc Natl Acad Sci U S A; 2022 May; 119(19):e2121653119. PubMed ID: 35507872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the extracellular gate and ion-substrate coupling in the glutamate transporter.
    Huang Z; Tajkhorshid E
    Biophys J; 2008 Sep; 95(5):2292-300. PubMed ID: 18515371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the first sodium binding site of the phosphate cotransporter NaPi-IIa (SLC34A1).
    Fenollar-Ferrer C; Forster IC; Patti M; Knoepfel T; Werner A; Forrest LR
    Biophys J; 2015 May; 108(10):2465-2480. PubMed ID: 25992725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine scanning mutagenesis of transmembrane helix 3 of a brain glutamate transporter reveals two conformationally sensitive positions.
    Silverstein N; Crisman TJ; Forrest LR; Kanner BI
    J Biol Chem; 2013 Jan; 288(2):964-73. PubMed ID: 23188832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of substrate release by the aspartate transporter GltPh: insights from simulations.
    DeChancie J; Shrivastava IH; Bahar I
    Mol Biosyst; 2011 Mar; 7(3):832-42. PubMed ID: 21161089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled ion binding and structural transitions along the transport cycle of glutamate transporters.
    Verdon G; Oh S; Serio RN; Boudker O
    Elife; 2014 May; 3():e02283. PubMed ID: 24842876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport mechanism of a bacterial homologue of glutamate transporters.
    Reyes N; Ginter C; Boudker O
    Nature; 2009 Dec; 462(7275):880-5. PubMed ID: 19924125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism and energetics of ligand release in the aspartate transporter GltPh.
    Heinzelmann G; Bastug T; Kuyucak S
    J Phys Chem B; 2013 May; 117(18):5486-96. PubMed ID: 23590433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved mechanism of extracellular gate opening and substrate binding in a glutamate transporter.
    Shrivastava IH; Jiang J; Amara SG; Bahar I
    J Biol Chem; 2008 Oct; 283(42):28680-90. PubMed ID: 18678877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular simulations elucidate the substrate translocation pathway in a glutamate transporter.
    Gu Y; Shrivastava IH; Amara SG; Bahar I
    Proc Natl Acad Sci U S A; 2009 Feb; 106(8):2589-94. PubMed ID: 19202063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na
    Alleva C; Kovalev K; Astashkin R; Berndt MI; Baeken C; Balandin T; Gordeliy V; Fahlke C; Machtens JP
    Sci Adv; 2020 Nov; 6(47):. PubMed ID: 33208356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unbiased simulations reveal the inward-facing conformation of the human serotonin transporter and Na(+) ion release.
    Koldsø H; Noer P; Grouleff J; Autzen HE; Sinning S; Schiøtt B
    PLoS Comput Biol; 2011 Oct; 7(10):e1002246. PubMed ID: 22046120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a 3rd Na+ Binding Site of the Glycine Transporter, GlyT2.
    Subramanian N; Scopelitti AJ; Carland JE; Ryan RM; O'Mara ML; Vandenberg RJ
    PLoS One; 2016; 11(6):e0157583. PubMed ID: 27337045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.