These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20816233)

  • 41. Nuclear mechanics and methods.
    Lammerding J; Dahl KN; Discher DE; Kamm RD
    Methods Cell Biol; 2007; 83():269-94. PubMed ID: 17613312
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Manipulation and isolation of single cells and nuclei.
    Tan SJ; Li Q; Lim CT
    Methods Cell Biol; 2010; 98():79-96. PubMed ID: 20816231
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nonlinear Cellular Mechanical Behavior Adaptation to Substrate Mechanics Identified by Atomic Force Microscope.
    Mollaeian K; Liu Y; Bi S; Wang Y; Ren J; Lu M
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400365
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calculation of the force field required for nucleus deformation during cell migration through constrictions.
    Estabrook ID; Thiam HR; Piel M; Hawkins RJ
    PLoS Comput Biol; 2021 May; 17(5):e1008592. PubMed ID: 34029312
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In situ mechanical properties of the chondrocyte cytoplasm and nucleus.
    Ofek G; Natoli RM; Athanasiou KA
    J Biomech; 2009 May; 42(7):873-7. PubMed ID: 19261283
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of nuclear mechanics in cell deformation under creeping flows.
    Serrano-Alcalde F; García-Aznar JM; Gómez-Benito MJ
    J Theor Biol; 2017 Nov; 432():25-32. PubMed ID: 28802825
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct Force Probe for Nuclear Mechanics.
    Tocco VJ; Neelam S; Zhang Q; Dickinson RB; Lele TP
    Methods Mol Biol; 2018; 1840():81-90. PubMed ID: 30141040
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nuclear mechanical resilience but not stiffness is modulated by αII-spectrin.
    Armiger TJ; Spagnol ST; Dahl KN
    J Biomech; 2016 Dec; 49(16):3983-3989. PubMed ID: 27836504
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The nonchromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy.
    Fey EG; Krochmalnic G; Penman S
    J Cell Biol; 1986 May; 102(5):1654-65. PubMed ID: 3700470
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vesicle-like biomechanics governs important aspects of nuclear geometry in fission yeast.
    Lim H W G; Huber G; Torii Y; Hirata A; Miller J; Sazer S
    PLoS One; 2007 Sep; 2(9):e948. PubMed ID: 17895989
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Contribution of the nucleus to the mechanical properties of endothelial cells.
    Caille N; Thoumine O; Tardy Y; Meister JJ
    J Biomech; 2002 Feb; 35(2):177-87. PubMed ID: 11784536
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prestressed nuclear organization in living cells.
    Mazumder A; Roopa T; Kumar A; Iyer KV; Ramdas NM; Shivashankar GV
    Methods Cell Biol; 2010; 98():221-39. PubMed ID: 20816237
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The nuclear envelope: emerging roles in development and disease.
    Wolfner MF; Wilson KL
    Cell Mol Life Sci; 2001 Nov; 58(12-13):1737-40. PubMed ID: 11766874
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Finite Element Modelling of Single Cell Based on Atomic Force Microscope Indentation Method.
    Wang L; Wang L; Xu L; Chen W
    Comput Math Methods Med; 2019; 2019():7895061. PubMed ID: 31933677
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of nuclear lamina-cytoskeleton interactions in the maintenance of cellular strength.
    Houben F; Ramaekers FC; Snoeckx LH; Broers JL
    Biochim Biophys Acta; 2007 May; 1773(5):675-86. PubMed ID: 17050008
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Force-induced changes in subnuclear movement and rheology.
    Booth-Gauthier EA; Alcoser TA; Yang G; Dahl KN
    Biophys J; 2012 Dec; 103(12):2423-31. PubMed ID: 23260044
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inverse tissue mechanics of cell monolayer expansion.
    Kondo Y; Aoki K; Ishii S
    PLoS Comput Biol; 2018 Mar; 14(3):e1006029. PubMed ID: 29494578
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Active probing of the mechanical properties of biological and synthetic vesicles.
    Piontek MC; Lira RB; Roos WH
    Biochim Biophys Acta Gen Subj; 2021 Apr; 1865(4):129486. PubMed ID: 31734458
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage.
    Nava MM; Miroshnikova YA; Biggs LC; Whitefield DB; Metge F; Boucas J; Vihinen H; Jokitalo E; Li X; García Arcos JM; Hoffmann B; Merkel R; Niessen CM; Dahl KN; Wickström SA
    Cell; 2020 May; 181(4):800-817.e22. PubMed ID: 32302590
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nuclear architecture and chromatin dynamics revealed by atomic force microscopy in combination with biochemistry and cell biology.
    Hirano Y; Takahashi H; Kumeta M; Hizume K; Hirai Y; Otsuka S; Yoshimura SH; Takeyasu K
    Pflugers Arch; 2008 Apr; 456(1):139-53. PubMed ID: 18172599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.