These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
442 related articles for article (PubMed ID: 20816238)
21. The biology and engineering of stem-cell control. O'Neill A; Schaffer DV Biotechnol Appl Biochem; 2004 Aug; 40(Pt 1):5-16. PubMed ID: 15270702 [TBL] [Abstract][Full Text] [Related]
22. Mechanotransduction: a major regulator of homeostasis and development. Kolahi KS; Mofrad MR Wiley Interdiscip Rev Syst Biol Med; 2010; 2(6):625-39. PubMed ID: 20890961 [TBL] [Abstract][Full Text] [Related]
23. Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the Human Apical Papilla via the Processes of Mechanosensing and Mechanotransduction. Zhou C; Zhang D; Zou J; Li X; Zou S; Xie J ACS Appl Mater Interfaces; 2019 Jul; 11(29):26448-26459. PubMed ID: 31251564 [TBL] [Abstract][Full Text] [Related]
24. Environmental physical cues determine the lineage specification of mesenchymal stem cells. Huang C; Dai J; Zhang XA Biochim Biophys Acta; 2015 Jun; 1850(6):1261-6. PubMed ID: 25727396 [TBL] [Abstract][Full Text] [Related]
25. Mechanoregulation of stem cell fate via micro-/nano-scale manipulation for regenerative medicine. Tay CY; Koh CG; Tan NS; Leong DT; Tan LP Nanomedicine (Lond); 2013 Apr; 8(4):623-38. PubMed ID: 23560412 [TBL] [Abstract][Full Text] [Related]
26. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. Teo BK; Wong ST; Lim CK; Kung TY; Yap CH; Ramagopal Y; Romer LH; Yim EK ACS Nano; 2013 Jun; 7(6):4785-98. PubMed ID: 23672596 [TBL] [Abstract][Full Text] [Related]
27. Biophysical signals controlling cell fate decisions: how do stem cells really feel? Costa P; Almeida FV; Connelly JT Int J Biochem Cell Biol; 2012 Dec; 44(12):2233-7. PubMed ID: 22982240 [TBL] [Abstract][Full Text] [Related]
28. Electrospun scaffolds for stem cell engineering. Lim SH; Mao HQ Adv Drug Deliv Rev; 2009 Oct; 61(12):1084-96. PubMed ID: 19647024 [TBL] [Abstract][Full Text] [Related]
29. Mechanotransduction from the ECM to the genome: are the pieces now in place? Gieni RS; Hendzel MJ J Cell Biochem; 2008 Aug; 104(6):1964-87. PubMed ID: 17546585 [TBL] [Abstract][Full Text] [Related]
31. Modelling and simulation of substrate elasticity sensing in stem cells. Zeng X; Li S Comput Methods Biomech Biomed Engin; 2011 May; 14(5):447-58. PubMed ID: 21516529 [TBL] [Abstract][Full Text] [Related]
32. Micromechanical control of cell and tissue development: implications for tissue engineering. Ghosh K; Ingber DE Adv Drug Deliv Rev; 2007 Nov; 59(13):1306-18. PubMed ID: 17920155 [TBL] [Abstract][Full Text] [Related]
33. Stem cell differentiation depending on different surfaces. Kress S; Neumann A; Weyand B; Kasper C Adv Biochem Eng Biotechnol; 2012; 126():263-83. PubMed ID: 22068841 [TBL] [Abstract][Full Text] [Related]
34. Vascular differentiation of bone marrow stem cells is directed by a tunable three-dimensional matrix. Zhang G; Drinnan CT; Geuss LR; Suggs LJ Acta Biomater; 2010 Sep; 6(9):3395-403. PubMed ID: 20302976 [TBL] [Abstract][Full Text] [Related]
35. Mechanotransduction in development. Farge E Curr Top Dev Biol; 2011; 95():243-65. PubMed ID: 21501754 [TBL] [Abstract][Full Text] [Related]
36. Engineering the stem cell microenvironment. Metallo CM; Mohr JC; Detzel CJ; de Pablo JJ; Van Wie BJ; Palecek SP Biotechnol Prog; 2007; 23(1):18-23. PubMed ID: 17269664 [TBL] [Abstract][Full Text] [Related]