These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 20816747)
1. Kinetic evidence that allosteric activation of antithrombin by heparin is mediated by two sequential conformational changes. Schedin-Weiss S; Richard B; Olson ST Arch Biochem Biophys; 2010 Dec; 504(2):169-76. PubMed ID: 20816747 [TBL] [Abstract][Full Text] [Related]
2. The signature 3-O-sulfo group of the anticoagulant heparin sequence is critical for heparin binding to antithrombin but is not required for allosteric activation. Richard B; Swanson R; Olson ST J Biol Chem; 2009 Oct; 284(40):27054-64. PubMed ID: 19661062 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of heparin activation of antithrombin: evidence for an induced-fit model of allosteric activation involving two interaction subsites. Desai UR; Petitou M; Björk I; Olson ST Biochemistry; 1998 Sep; 37(37):13033-41. PubMed ID: 9737884 [TBL] [Abstract][Full Text] [Related]
4. Antiangiogenic forms of antithrombin specifically bind to the anticoagulant heparin sequence. Schedin-Weiss S; Richard B; Hjelm R; Olson ST Biochemistry; 2008 Dec; 47(51):13610-9. PubMed ID: 19035835 [TBL] [Abstract][Full Text] [Related]
5. Cooperative Interactions of Three Hotspot Heparin Binding Residues Are Critical for Allosteric Activation of Antithrombin by Heparin. Richard B; Swanson R; Izaguirre G; Olson ST Biochemistry; 2018 Apr; 57(15):2211-2226. PubMed ID: 29561141 [TBL] [Abstract][Full Text] [Related]
6. The critical role of hinge-region expulsion in the induced-fit heparin binding mechanism of antithrombin. Langdown J; Belzar KJ; Savory WJ; Baglin TP; Huntington JA J Mol Biol; 2009 Mar; 386(5):1278-89. PubMed ID: 19452598 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of antithrombin in a heparin-bound intermediate state. Johnson DJ; Huntington JA Biochemistry; 2003 Jul; 42(29):8712-9. PubMed ID: 12873131 [TBL] [Abstract][Full Text] [Related]
8. Role of arginine 129 in heparin binding and activation of antithrombin. Desai U; Swanson R; Bock SC; Bjork I; Olson ST J Biol Chem; 2000 Jun; 275(25):18976-84. PubMed ID: 10764763 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of heparin activation of antithrombin. Role of individual residues of the pentasaccharide activating sequence in the recognition of native and activated states of antithrombin. Desai UR; Petitou M; Björk I; Olson ST J Biol Chem; 1998 Mar; 273(13):7478-87. PubMed ID: 9516447 [TBL] [Abstract][Full Text] [Related]
10. The role of Arg46 and Arg47 of antithrombin in heparin binding. Arocas V; Bock SC; Olson ST; Björk I Biochemistry; 1999 Aug; 38(31):10196-204. PubMed ID: 10433728 [TBL] [Abstract][Full Text] [Related]
11. Importance of tryptophan 49 of antithrombin in heparin binding and conformational activation. Monien BH; Krishnasamy C; Olson ST; Desai UR Biochemistry; 2005 Sep; 44(35):11660-8. PubMed ID: 16128566 [TBL] [Abstract][Full Text] [Related]
12. Mechanism by which exosites promote the inhibition of blood coagulation proteases by heparin-activated antithrombin. Izaguirre G; Swanson R; Raja SM; Rezaie AR; Olson ST J Biol Chem; 2007 Nov; 282(46):33609-33622. PubMed ID: 17875649 [TBL] [Abstract][Full Text] [Related]
13. The region of antithrombin interacting with full-length heparin chains outside the high-affinity pentasaccharide sequence extends to Lys136 but not to Lys139. Arocas V; Turk B; Bock SC; Olson ST; Björk I Biochemistry; 2000 Jul; 39(29):8512-8. PubMed ID: 10913257 [TBL] [Abstract][Full Text] [Related]
14. Molecular mechanisms of antithrombin-heparin regulation of blood clotting proteinases. A paradigm for understanding proteinase regulation by serpin family protein proteinase inhibitors. Olson ST; Richard B; Izaguirre G; Schedin-Weiss S; Gettins PG Biochimie; 2010 Nov; 92(11):1587-96. PubMed ID: 20685328 [TBL] [Abstract][Full Text] [Related]
15. Roles of N-terminal region residues Lys11, Arg13, and Arg24 of antithrombin in heparin recognition and in promotion and stabilization of the heparin-induced conformational change. Schedin-Weiss S; Desai UR; Bock SC; Olson ST; Björk I Biochemistry; 2004 Jan; 43(3):675-83. PubMed ID: 14730971 [TBL] [Abstract][Full Text] [Related]
16. The mechanism of high affinity pentasaccharide binding to antithrombin, insights from Gaussian accelerated molecular dynamics simulations. Balogh G; Komáromi I; Bereczky Z J Biomol Struct Dyn; 2020 Oct; 38(16):4718-4732. PubMed ID: 31686597 [TBL] [Abstract][Full Text] [Related]
17. Conformational changes in serpins: II. The mechanism of activation of antithrombin by heparin. Whisstock JC; Pike RN; Jin L; Skinner R; Pei XY; Carrell RW; Lesk AM J Mol Biol; 2000 Sep; 301(5):1287-305. PubMed ID: 10966821 [TBL] [Abstract][Full Text] [Related]
18. Conformational activation of antithrombin by heparin involves an altered exosite interaction with protease. Izaguirre G; Aguila S; Qi L; Swanson R; Roth R; Rezaie AR; Gettins PG; Olson ST J Biol Chem; 2014 Dec; 289(49):34049-64. PubMed ID: 25331949 [TBL] [Abstract][Full Text] [Related]
19. Insights into the induced fit mechanism in antithrombin-heparin interaction using molecular dynamics simulations. Verli H; Guimarães JA J Mol Graph Model; 2005 Dec; 24(3):203-12. PubMed ID: 16146701 [TBL] [Abstract][Full Text] [Related]
20. Helix D elongation and allosteric activation of antithrombin. Belzar KJ; Zhou A; Carrell RW; Gettins PG; Huntington JA J Biol Chem; 2002 Mar; 277(10):8551-8. PubMed ID: 11741963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]