These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2081699)

  • 1. The mechanical properties of the human subcalcaneal fat pad in compression.
    Bennett MB; Ker RF
    J Anat; 1990 Aug; 171():131-8. PubMed ID: 2081699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical energy and effective foot mass during impact loading of walking and running.
    Chi KJ; Schmitt D
    J Biomech; 2005 Jul; 38(7):1387-95. PubMed ID: 15922749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of varying material properties on the load deformation characteristics of heel cushions.
    Sun PC; Wei HW; Chen CH; Wu CH; Kao HC; Cheng CK
    Med Eng Phys; 2008 Jul; 30(6):687-92. PubMed ID: 17888713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of isolation on the mechanics of the human heel pad.
    Aerts P; Ker RF; de Clercq D; Ilsley DW
    J Anat; 1996 Apr; 188 ( Pt 2)(Pt 2):417-23. PubMed ID: 8621341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics.
    Marsh RL; Ellerby DJ; Henry HT; Rubenson J
    J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on the load-displacement curves of a human healthy heel pad: In vivo compression data compared to numerical results.
    Fontanella CG; Matteoli S; Carniel EL; Wilhjelm JE; Virga A; Corvi A; Natali AN
    Med Eng Phys; 2012 Nov; 34(9):1253-9. PubMed ID: 22265099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations into the fat pads of the sole of the foot: heel pressure studies.
    Jahss MH; Kummer F; Michelson JD
    Foot Ankle; 1992 Jun; 13(5):227-32. PubMed ID: 1624185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo examination of the dynamic properties of the human heel pad.
    Kinoshita H; Ogawa T; Kuzuhara K; Ikuta K
    Int J Sports Med; 1993 Aug; 14(6):312-9. PubMed ID: 8407060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive formulation and numerical analysis of the heel pad region.
    Natali AN; Fontanella CG; Carniel EL
    Comput Methods Biomech Biomed Engin; 2012; 15(4):401-9. PubMed ID: 21246425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bulk compressive properties of the heel fat pad during walking: a pilot investigation in plantar heel pain.
    Wearing SC; Smeathers JE; Yates B; Urry SR; Dubois P
    Clin Biomech (Bristol); 2009 May; 24(4):397-402. PubMed ID: 19232452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The compressive material properties of the plantar soft tissue.
    Ledoux WR; Blevins JJ
    J Biomech; 2007; 40(13):2975-81. PubMed ID: 17433335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging the shear modulus of the heel fat pads.
    Weaver JB; Doyley M; Cheung Y; Kennedy F; Madsen EL; Van Houten EE; Paulsen K
    Clin Biomech (Bristol); 2005 Mar; 20(3):312-9. PubMed ID: 15698705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of heel-pad thickness and loading protocol on measured heel-pad stiffness and a standardized protocol for inter-subject comparability.
    Spears IR; Miller-Young JE
    Clin Biomech (Bristol); 2006 Feb; 21(2):204-12. PubMed ID: 16289518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Running biomechanics: shorter heels, better economy.
    Scholz MN; Bobbert MF; van Soest AJ; Clark JR; van Heerden J
    J Exp Biol; 2008 Oct; 211(Pt 20):3266-71. PubMed ID: 18840660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of lateral heel flare of running shoes on pronation and impact forces.
    Nigg BM; Morlock M
    Med Sci Sports Exerc; 1987 Jun; 19(3):294-302. PubMed ID: 3600244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: II. Muscle energy use as indicated by blood flow.
    Ellerby DJ; Marsh RL
    J Exp Biol; 2006 Jun; 209(Pt 11):2064-75. PubMed ID: 16709909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The damping properties of the venous plexus of the heel region of the foot during simulated heelstrike.
    Weijers RE; Kessels AG; Kemerink GJ
    J Biomech; 2005 Dec; 38(12):2423-30. PubMed ID: 16214490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Material properties of the heel fat pad across strain rates.
    Grigoriadis G; Newell N; Carpanen D; Christou A; Bull AMJ; Masouros SD
    J Mech Behav Biomed Mater; 2017 Jan; 65():398-407. PubMed ID: 27643676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of an infrapatellar fat pad edema on patellofemoral biomechanics and knee kinematics: a possible relation to the anterior knee pain syndrome.
    Bohnsack M; Klages P; Hurschler C; Halcour A; Wilharm A; Ostermeier S; Rühmann O; Wirth CJ
    Arch Orthop Trauma Surg; 2009 Aug; 129(8):1025-30. PubMed ID: 17053945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical properties of the heel pad in unilateral plantar heel pain syndrome.
    Tsai WC; Wang CL; Hsu TC; Hsieh FJ; Tang FT
    Foot Ankle Int; 1999 Oct; 20(10):663-8. PubMed ID: 10541000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.